首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At least two 1-aminocyclopropane-1-carboxylic acid synthase genes (ACS) are implicated in the submergence response of rice (Oryza sativa). Previously, the OS-ACS5 gene has been shown to be induced during short- as well as long-term complete submergence of seedlings and to be controlled by a balance of gibberellin and abscisic acid in both lowland and deepwater rice. This study demonstrates that OS-ACS5 mRNA is localized in specific tissues and cells both during normal development and in response to complete submergence. The temporal and spatial regulation of OS-ACS5 expression is presented by in situ hybridization and histochemical analysis of beta-glucuronidase (GUS) activity in transgenic rice carrying an OS-ACS5-gus fusion. Whole-mount in situ hybridization revealed that in air-grown rice seedlings, OS-ACS5 was expressed at a low level in the shoot apex, meristems, leaf, and adventitious root primordia, and in vascular tissues of nonelongated stems and leaf sheaths. In response to complete submergence, the expression in vascular bundles of young stems and leaf sheaths was strongly induced. The results of histochemical GUS assays were consistent with those found by whole-mount in situ hybridization. Our findings suggest that OS-ACS5 plays a role in vegetative growth of rice under normal conditions and is also recruited for enhanced growth upon complete submergence. The possible implication of OS-ACS5 in root-shoot communication during submergence stress and its putative role in aerenchyma formation upon low-oxygen stress are discussed.  相似文献   

2.
It is known that alcoholic fermentation is important for survival of plants under anaerobic conditions. Acetaldehyde, one of the intermediates of alcoholic fermentation, is not only reduced by alcohol dehydrogenase but also can be oxidized by aldehyde dehydrogenase (ALDH). To determine whether ALDH plays a role in anaerobic metabolism in rice (Oryza sativa L. cv Nipponbare), we characterized a cDNA clone encoding mitochondrial ALDH from rice (Aldh2a). Analysis of sub-cellular localization of ALDH2a protein using green fluorescent protein and an in vitro ALDH assay using protein extracts from Escherichia coli cells that overexpressed ALDH2a indicated that ALDH2a functions in the oxidation of acetaldehyde in mitochondria. A Southern-blot analysis indicated that mitochondrial ALDH is encoded by at least two genes in rice. We found that the Aldh2a mRNA was present at high levels in leaves of dark-grown seedlings, mature leaf sheaths, and panicles. It is interesting that expression of the rice Aldh2a gene, unlike the expression of the tobacco (Nicotiana tabacum) Aldh2a gene, was induced in rice seedlings by submergence. Experiments with ruthenium red, which is a blocker of Ca(2+) fluxes in rice as well as maize (Zea mays), suggest that the induction of expression of Adh1 and Pdc1 by low oxygen stress is regulated by elevation of the cytosolic Ca(2+) level. However, the induction of Aldh2a gene expression may not be controlled by the cytosolic Ca(2+) level elevation. A possible involvement of ALDH2a in the submergence tolerance of rice is discussed.  相似文献   

3.
We describe here the isolation and characterization of OsiSAP8, a member of stress Associated protein (SAP) gene family from rice characterized by the presence of A20 and AN1 type Zinc finger domains. OsiSAP8 is a multiple stress inducible gene, induced by various stresses, namely heat, cold, salt, desiccation, submergence, wounding, heavy metals as well as stress hormone Abscisic acid. OsiSAP8 protein fused to GFP was localized towards the periphery of the cells in the epidermal cells of infiltrated Nicotiana benthamiana leaves. Yeast two hybrid analysis revealed that A20 and AN1 type zinc-finger domains of OsiSAP8 interact with each other. Overexpression of the gene in both transgenic tobacco and rice conferred tolerance to salt, drought and cold stress at seed germination/seedling stage as reflected by percentage of germination and gain in fresh weight after stress recovery. Transgenic rice plants were tolerant to salt and drought during anthesis stage without any yield penalty as compared to unstressed transgenic plants. OsiSAP8 is deposited in the Genbank with the Accession number AY345599.  相似文献   

4.
5.
小麦胁迫相关基因W1的克隆及表达模式分析   总被引:1,自引:0,他引:1  
应用噬菌体原位杂交技术从干旱胁迫诱导的小麦cDNA文库中克隆到一个胁迫诱导的基因片段别。删全长cDNA为901bp,其中,编码区长498bp,编码166个氨基酸。Southern杂交表明,W1是一个低拷贝基因。RT—PCR结果表明,W1受干旱、低温的诱导,但不受高盐的诱导。氨基酸序列分析发现W1有一个USP保守区(pfam00582)。同源性分析发现W1与一个水稻胁迫诱导蛋白(NM_001061239)的同源性为83%,但该类蛋白的功能尚无报道。肼是小麦第1个被克隆的胁迫相关蛋白基因,该基因的克隆有助于阐明小麦的抗逆机制,并为今后培育抗逆性小麦品种提供候选基因。  相似文献   

6.
Genes/QTLs affecting flood tolerance in rice   总被引:8,自引:1,他引:7  
The adaptation of deepwater rice to flooding is attributed to two mechanisms, submergence tolerance and plant elongation. Using a QTL mapping study with replicated phenotyping under two contrasting (water qualities) submergence treatments and AFLP markers, we were able to identify several genes/QTLs that control plant elongation and submergence tolerance in a recombinant inbred rice population. Our results indicate that segregation of rice plants in their responses to different flooding stress conditions is largely due to the differential expression of a few key elongation and submergence tolerance genes. The most important gene was QIne1 mapped near sd-1 on chromosome 1. The Jalmagna (the deepwater parent) allele at this locus had a very large effect on internal elongation and contributed significantly to submergence tolerance under flooding. The second locus was a major gene, sub1(t), mapped to chromosome 9, which contributed to submergence tolerance only. The third one was a QTL, QIne4, mapped to chromosome 4. The IR74 (non-elongating parent) allele at this locus had a large effect for internal elongation. An additional locus that interacted strongly with both QIne1 and QIne4 appeared near RG403 on chromosome 5, suggesting a complex epistatic relationship among the three loci. Several QTLs with relatively small effects on plant elongation and submergence tolerance were also identified. The genetic aspects of these flooding tolerance QTLs with respect to patterns of differential expression of elongation and submergence tolerance genes under flooding are discussed. Received: 13 December 1999 / Accepted: 14 March 2000<@head-com-p1a.lf>Communicated by G. Wenzel  相似文献   

7.
Salinity and submergence are two very prominent abiotic stress conditions affecting rice yield adversely in the coastal agro ecosystem. Marker Assisted Backcross Breeding (MABB) is an efficient and fast track molecular tool to incorporate a desired stress tolerant QTL/gene into an improved cultivar. The present study was carried out for the introgression of Saltol QTL responsible for salinity tolerance and Sub1 gene responsible for submergence tolerance into the high yielding rice variety Aiswarya independently through MABB. Final objective of the study is to develop dual stress tolerant (tolerance to salinity and submergence) Aiswarya rice variety by pyramiding the both target QTLs introgressed BC2F2 progenies having maximum background homozygosity. The donors of Saltol QTL and Sub1 gene used in the present study were FL478 and Swarna Sub1, respectively. Based on the background genome analysis of the introgressed plants, the plants with > 85–90% background similarity were selected for pyramiding of Saltol QTL and Sub1 gene into the elite background of rice variety Aiswarya. Those selected introgressed lines with Saltol QTL and Sub1 gene will be again crossed to pyramid both Saltol QTL and Sub1 gene into the rice variety Aiswarya. Such a mega rice variety pyramided with dual stress tolerant QTLs is the expected outcome of this study and can be recommended for cultivation in the flood prone saline coastal agroecosystem.  相似文献   

8.
9.
10.
OsWRKY71, a rice transcription factor, is involved in rice defense response   总被引:13,自引:0,他引:13  
  相似文献   

11.
Xu D  Duan X  Wang B  Hong B  Ho T  Wu R 《Plant physiology》1996,110(1):249-257
A late embryogenesis abundant (LEA) protein gene, HVA1, from barley (Hordeum vulgare L.) was introduced into rice suspension cells using the Biolistic-mediated transformation method, and a large number of independent transgenic rice (Oryza sativa L.) plants were generated. Expression of the barley HVA1 gene regulated by the rice actin 1 gene promoter led to high-level, constitutive accumulation of the HVA1 protein in both leaves and roots of transgenic rice plants. Second-generation transgenic rice plants showed significantly increased tolerance to water deficit and salinity. Transgenic rice plants maintained higher growth rates than nontransformed control plants under stress conditions. The increased tolerance was also reflected by delayed development of damage symptoms caused by stress and by improved recovery upon the removal of stress conditions. We also found that the extent of increased stress tolerance correlated with the level of the HVA1 protein accumulated in the transgenic rice plants. Using a transgenic approach, this study provides direct evidence supporting the hypothesis that LEA proteins play an important role in the protection of plants under water-or salt-stress conditions. Thus, LEA genes hold considerable potential for use as molecular tools for genetic crop improvement toward stress tolerance.  相似文献   

12.
13.
14.
Calcineurin is a Ca2+- and calmodulin-dependent serine/threonine phosphatase and has multiple functions in animal cells including regulating ionic homeostasis. We generated transgenic rice plants that not only expressed a truncated form of the catalytic subunit of mouse calcineurin, but also were able to grow and fertilize normally in the field. Notably, the expression of the mouse calcineurin gene in rice resulted in its higher salt stress tolerance than the non-transgenic rice. Physiological studies have indicated that the root growth of transgenic plants was less inhibited than the shoot growth, and that less Na+ was accumulated in the roots of transgenic plants after a prolonged period of salt stress. These findings imply that the heterologous calcineurin plays a significant role in maintaining ionic homeostasis and the integrity of plant roots when exposed to salt. In addition, the calcineurin gene expression in the stems of transgenic plants correlated with the increased expression of the Rab16A gene that encodes a group 2-type late-embryogenesis-abundant (LEA) protein. Altogether our findings provide the first genetic and physiological evidence that expression of the mouse calcineurin protein functionally improves the salt stress tolerance of rice partly by limiting Na+ accumulation in the roots.  相似文献   

15.
To increase the beta-carotene (provitamin A) content and thus the nutritional value of Golden Rice, the optimization of the enzymes employed, phytoene synthase (PSY) and the Erwinia uredovora carotene desaturase (CrtI), must be considered. CrtI was chosen for this study because this bacterial enzyme, unlike phytoene synthase, was expressed at barely detectable levels in the endosperm of the Golden Rice events investigated. The low protein amounts observed may be caused by either weak cauliflower mosaic virus 35S promoter activity in the endosperm or by inappropriate codon usage. The protein level of CrtI was increased to explore its potential for enhancing the flux of metabolites through the pathway. For this purpose, a synthetic CrtI gene with a codon usage matching that of rice storage proteins was generated. Rice plants were transformed to express the synthetic gene under the control of the endosperm-specific glutelin B1 promoter. In addition, transgenic plants expressing the original bacterial gene were generated, but the endosperm-specific glutelin B1 promoter was employed instead of the cauliflower mosaic virus 35S promoter. Independent of codon optimization, the use of the endosperm-specific promoter resulted in a large increase in bacterial desaturase production in the T(1) rice grains. However, this did not lead to a significant increase in the carotenoid content, suggesting that the bacterial enzyme is sufficiently active in rice endosperm even at very low levels and is not rate-limiting. The endosperm-specific expression of CrtI did not affect the carotenoid pattern in the leaves, which was observed upon its constitutive expression. Therefore, tissue-specific expression of CrtI represents the better option.  相似文献   

16.
Xu Y  Yu H  Hall TC 《Plant physiology》1994,106(2):459-467
In rice (Oryza sativa L.), cytosolic triosephosphate isomerase (TPI) is encoded by a single gene. TPI catalyzes a vital step in glycolysis, and RNA blots showed that the tpi gene is expressed in all vegetative tissues (root, culm, and leaves) and in rice suspension cells. No effect of light on expression was detected, but submergence of rice seedlings resulted in elevated levels of TPI mRNA in roots and culms. The 2767-bp 5[prime] upstream sequence of the tpi gene was fused translationally with the [beta]-glucuronidase (gusA) gene, and the resulting construct, TPI-GUS, was found to express constitutive, high levels of GUS activity in transgenic tobacco (Nicotiana tabacum) plants. However, the same construct yielded no GUS activity in stably transformed rice plants, and RNA blots showed that no GUS mRNA could be detected even though stable integration of functional copies of the construct was confirmed by Southern blot and genomic polymerase chain reaction analyses. Transient assays using particle bombardment yielded high levels of GUS expression from the TPI-GUS construct in tobacco leaves, but essentially no expression in rice, barley, or maize leaves. When the first intron of the tpi gene was included in the construct (TPI-int1-GUS), transient GUS activity was routinely obtained in rice leaves, revealing that the first intron of the rice tpi gene is crucial for its expression in rice. TPI-int1-GUS also directed transient GUS expression in maize and barley leaves, but little or no activity was obtained from this construct in tobacco, tomato, or soybean leaves. These results with the rice tpi promoter are in accordance with mounting evidence that differences in gene expression exist between monocots and dicots.  相似文献   

17.
Flagellin is a component of bacterial flagella and acts as a proteinaceous elicitor of defence responses in organisms. Flagellin from a phytopathogenic bacterium, Acidovorax avenae strain N1141, induces immune responses in suspension-cultured rice cells. To analyse the function of flagellin in rice, we fused the N1141 flagellin gene to the cauliflower mosaic virus 35S promoter and introduced it into rice. Many of the resulting transgenic rice plants accumulated flagellin at various levels. The transgenic rice developed pale spots in the leaves. The expression of a defence-related gene for phenylalanine ammonia-lyase was induced in the transgenic plants, and H(2)O(2) production and cell death were observed in some plants with high levels of gene expression, suggesting that the flagellin triggers immune responses in the transgenic rice. Transgenic plants inoculated with Magnaporthe grisea, the causal agent of rice blast, showed enhanced resistance to blast, suggesting that the flagellin production confers disease resistance in the transgenic rice.  相似文献   

18.
本研究中 ,构建了含有编码绿色荧光蛋白的改进型基因质粒pJPM5。用基因枪法分别把pJPM5和另一带有绿色荧光蛋白基因的质粒pSBG70 0转入水稻TNG6 7愈伤组织。用South ern杂交法证实了转基因的存在 ,而且表明多数转基因植株含有 1到 8个拷贝的转基因。取 2个月的转基因植株上的叶片用于分析绿色荧光蛋白基因表达。用SLM - 80 0 0荧光分析仪定量测定绿色荧光蛋白。多数转基因植株具有很高的绿色荧光蛋白信号。虽然水稻植株有少量自发荧光 ,但是绿色荧光蛋白基因表达出的绿色荧光蛋白信号比植株的自发荧光强得多 ,其测定不会受自发荧光的太大影响。在荧光显微镜下观察到了绿色荧光蛋白基因的表达。借助观察分析绿色荧光蛋白基因的瞬时表达 ,本研究还发现基因枪法转化中 ,如果两枪的气压为90 0psi& 135 0psi,比两枪的气压都为 90 0psi或者 135 0psi更好 ,因其能使质粒进入更多的细胞。研究结果表明 ,绿色荧光蛋白基因可以作为水稻 (甚至小麦、玉米 )转基因研究中的报告基因。研究还显示 ,MAR序列能明显增强绿色荧光蛋白基因的表达能力 (这一结果在另文讨论 ) .  相似文献   

19.
Analysis of rice Act1 5' region activity in transgenic rice plants.   总被引:7,自引:0,他引:7       下载免费PDF全文
W Zhang  D McElroy    R Wu 《The Plant cell》1991,3(11):1155-1165
The 5' region of the rice actin 1 gene (Act1) has been developed as an efficient regulator of foreign gene expression in transgenic rice plants. To determine the pattern and level of rice Act1 5' region activity, transgenic rice plants containing the Act1 5' region fused to a bacterial beta-glucuronidase (Gus) coding sequence were generated. Two independent clonal lines of transgenic rice plants were analyzed in detail. Quantitative analysis showed that tissue from these transgenic rice plants have a level of GUS protein that represents as much as 3% of total soluble protein. We were able to demonstrate that Act1-Gus gene expression is constitutive throughout the sporophytic and gametophytic tissues of these transgenic rice plants. Plants from one transgenic line were analyzed for the segregation of GUS activity in pollen by in situ histochemical staining, and the inheritance and stability of Act1-Gus expression were assayed in subsequently derived progeny plants.  相似文献   

20.
OsZFP1(水稻锌指蛋白1)基因编码的蛋白含有3个推测的Cys2/Cys2-型锌指结构域,它的表达受盐胁迫负调控.构建了以35S为启动子的OsZFP1基因的植物表达载体,并将其转入拟南芥(Arabidopsis thaliana L.)植物和水稻(Oryza sativa L.)愈伤组织中以过量表达OsZFP1基因.转基因的拟南芥植株和水稻愈伤组织对盐处理的敏感性都比野生型要高.这一结果表明OsZFP1基因可能编码一种负调控蛋白,它可能抑制某些盐诱导基因的表达.在ABA处理下,转基因拟南芥植株比野生型植株抽苔晚,说明OsZFP1基因的作用可能受ABA调节.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号