首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between replication and the synthesis of matrix sulfated proteoglycans was investigated with fetal rat chondrocytes grown in monolayer culture. The effect of N6 O2' dibutyryl adenosine 3', 5' cyclic monophosphate (DBcAMP), adenosine 3', 5' cyclic monophosphate (cAMP), 8 Bromo adenosine 3', 5' cyclic monophosphate (8 Br-cAMP), sodium butyrate and hydroxyurea was examined. Between 0.05 and 0.5 mM DBcAMP, a dose related inhibition of cell division and stimulation of [35SO=/4] incorporation into matrix proteoglycans was demonstrated. At the higher concentrations of DBcAMP, cell division was completely inhibited and the enhancement of [35SO=/4] incorporation into matrix proteoglycans ranged between 40 and 120% (P less than 0.01). Utilizing 14C-glucosamine and photometric determination of proteoglycans with Alcian Blue, it was demonstrated that the increase in sulfate incorporation reflected enhanced accumulation of extracellular matrix. The effects of DBcAMP were mimicked by 8 Br-cAMP, suggesting they were mediated by the adenylyl cyclase system. cAMP (0.05-0.5 mM), sodium butyrate (0.1-0.5 mM) and hydroxyurea (0.5-5 mM) partially or fully inhibited cell division, but either failed or only slightly enhanced sulfate incorporation. The enhanced sulfated proteoglycan deposition promoted by DBcAMP began 8 to 12 hours after serum stimulation, its onset occurred prior to thymidine incorporation and the effect persisted for 28 hours. Determination of cell volume demonstrated an increase in size of DBcAMP treated chondrocytes between 8 to 12 hours, coincident with the onset of increased sulfate incorporation. These results are consistent with a model where matrix sulfated proteoglycan deposition by chondrocytes is mediated by intracellular cAMP levels and occurs in the G1 phase of the cell cycle.  相似文献   

2.
An endothelial cell (EC) growth factor isolated from bovine brain stimulates in vitro growth of human umbilical vein endothelial cells, and permits long term serial propagation. In the presence of increasing concentrations of EC growth factor, confluent cultures of early (CPDL less than or equal to 20) and late (CPDL greater than 20) passage human endothelial cells exhibit an increased incorporation of 3H-glucosamine and Na235SO4 into the glycosaminoglycans (GAG), hyaluronic acid, chondroitin, chondroitin-4-sulfate, dermatan-4-sulfate, and chondroitin-6-sulfate. An increase in both labelled sulfated and nonsulfated GAG was observed in the cytosol, membrane, secreted and extracellular matrix fractions. In contrast, endothelial cells grown in the presence of EC growth factor contained decreased amounts of labelled heparan sulfate than cells grown without EC growth factor. Confluent cultures of early passage cells had significantly more labelled GAG but significantly less heparan sulfate than cultures of late passage cells on a per cell basis. Extracellular matrix from early passage cells contained about two- to seven-fold more labelled GAG than extracellular matrix from late passage cells, but only about half as much labelled heparan sulfate. Cell adhesion was enhanced when cells were grown in the presence of EC growth factor as compared to adhesion of cells grown without EC growth factor. Conversely, trypsin-mediated detachment of cells grown in the presence of growth factor was inhibited as compared to detachment of cells grown in medium without EC growth factor. The composition of the extracellular matrix influenced incorporation of labelled GAG into extracellular matrix. Early passage cells grown to confluence on a matrix from late passage cells incorporated significantly less labelled GAG into extracellular matrix than when grown to confluence on matrix from early passage cells. Incorporation of labelled GAG into extracellular matrix was significantly higher when late passage cells were grown on a matrix from early passage endothelial cells than when grown on matrix from late passage cells. We conclude that EC growth factor selectively stimulates incorporation of isotopic precursors into GAG in cultures of early and late passage endothelial cells but inhibits incorporation of radiolabel into heparan sulfate; early passage cells contain more GAG but less heparan sulfate than late passage cells, extracellular matrix controls the amount of GAG and heparan sulfate incorporated into matrix.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The development of cartilage nodules in cultures of chick limb bud mesenchyme (Hamburger-Hamilton stages 23/24) is significantly promoted when the culture medium is supplemented with (poly-L-lysine (PL) (M(r) greater than or equal to 14K) (San Antonio and Tuan, 1986. Dev. Biol. 115: 313). Here we present findings consistent with the hypothesis that PL may promote chondrogenesis by interacting electrostatically with sulfated glycosaminoglycans (GAGs): (1) poly-L-ornithine, poly-L-histidine, poly-D,L-lysine, and lysine-containing heteropolypeptides stimulate chondrogenesis in proportion to their contents of cationic residues; (2) the effects of PL are diminished when limb mesenchyme cultures are supplemented with exogenous GAGs, including heparin, dermatan sulfate, and chondroitin sulfate; (3) in high density cultures of limb bud mesenchyme, the release of sulfated macromolecules, but not of proteins in general, into the culture medium was significantly inhibited by PL (398K M(r)) treatment, and a net increase in total GAG content of the PL-treated cultures was observed; and (4) in monolayer cultures of cells derived from other chick embryonic tissues, including liver, skeletal muscle, and calvaria, PL treatment promoted the cell layer-associated retention of sulfated GAG. These effects were not observed using the nonstimulatory, low M(r) PL (4K). Based on the above findings and those from previous studies, it is proposed that PL may promote chondrogenesis by interacting electrostatically with cartilage GAGs, thus trapping the extracellular matrix around the newly emerging cartilage nodules and thereby stabilizing their growth and differentiation.  相似文献   

4.
This report describes synthesis and degradation of proteoglycans by human gingival fibroblasts growing in an endogenous three-dimensional matrix. Cells grown in the matrix cultures demonstrated a high rate of proteoglycan synthesis, varying between 2 and 4 times that of cells maintained in monolayer cultures. In addition, the relative amount deposited into the cell layer was increased in the matrix cultures, constituting 70% to 90% of the synthesized material during the first 24 h. Comparable levels for the monolayer cultures were 30% to 60%. The majority of the 35S-sulfate-labeled material in both matrix (80%) and monolayer (62%) cultures was susceptible to chondroitin ABC-lyase digestion. The major product was a low Mr (120,000) proteoglycan which could be immunoprecipitated by an antibody against PGII (decorin). In addition, the cells synthesized two chondroitin ABC-lyase-sensitive proteoglycans, one with Mr greater than 400,000, one with an apparent Mr of 250,000, as well as two heparan sulfate proteoglycans with Mr greater than 250,000. The low Mr dermatan sulfate, decorin, was also the major component deposited in the three-dimensional matrix, constituting about 60% of the total sulfate incorporation. In contrast, fibroblasts in monolayer cultures deposited only a small amount (13%) of decorin (PGII) in the cell layer, and the major proteoglycan in this compartment was heparin sulfate. The rate of release of the newly deposited proteoglycans was the same in the two culture conditions, although material released from the three-dimensional matrix cultures contained small Mr components indicating a higher degree of degradation. These studies show differences in proteoglycan metabolism by gingival fibroblasts grown in an endogenous matrix and in monolayer cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cell culture in collagen lattice is known to be a more physiological model than monolayer for studying the regulation of extracellular matrix protein deposition. The synthesis of sulfated glycosaminoglycans (GAG) and dermatan sulfate (DS) proteoglycans by 3 cell strains were studied in confluent monolayers grown on plastic surface, in comparison to fully retracted collagen lattices. Cells were labelled with35S-sulfate, followed by GAG and proteoglycan analysis by cellulose acetate and SDS-polyacrylamide gel electrophoresis, respectively. The 3 cell strains contracted the lattice in a similar way. In monolayer cultures, the major part of GAG was secreted into culture medium whereas in lattice cultures of dermal fibroblasts and osteosarcoma MG-63 cells but not fibrosarcoma HT-1080 cells, a higher proportion of GAGs, including dermatan sulfate, was retained within the lattices. Small DS proteoglycans, decorin and biglycan, were detected in fibroblasts and MG-63 cultures. They were preferentially trapped within the collagen gel. In retracted lattices, decorin had a higher Mr than in monolayer. Biglycan was detected in monolayer and lattice cultures of MG-63 cells but in lattice cultures only in the case of fibroblasts. In this last case, an up regulation of biglycan mRNA steady state level and down regulation of decorin mRNA was observed, in comparison to monolayers, indicating that collagen can modulate the phenotypical expression of small proteoglycan genes.Supported by a fellowship from the Centre National de la Recherche Scientifique  相似文献   

6.
The effect of a high external potassium concentration on the synthesis and deposition of matrix components by chondrocytes in cell culture was determined. There is a twofold increase in the amount of chondroitin 4- and 6-sulfate accumulated by chondrocytes grown in medium containing a high potassium concentration. There is also a comparable increase in the production of other sulfated glycosaminoglycans (GAG) including heparan sulfate and uncharacterized glycoprotein components. The twofold greater accumulation of GAG in the high potassium medium is primarily the result of a decrease in their rate of degradation. In spite of this increased accumulation of GAG, the cells in high potassium fail to elaborate appreciable quantities of visible matrix, although they do retain the typical chondrocytic polygonal morphology. Although most of the products are secreted into the culture medium in the high potassium environment, the cell layer retains the same amount of glycosaminoglycan as the control cultures. The inability of chondrocytes grown in high potassium to elaborate the typical hyaline cartilage matrix is not a consequence of an impairment in collagen synthesis, since there is no difference in the total amount of collagen synthesized by high potassium or control cultures. There is, however, a slight increase in the proportion of collagen that is secreted into the medium by chondrocytes in high potassium. Synthesis of the predominant cartilage matrix molecules is not sufficient in itself to ensure that these molecules will be assembled into a hyaline matrix.  相似文献   

7.
The relative amount of sulfated glycosaminoglycans associated with the cell layer of parent and SV40-transformed Swiss mouse 3T3 cells was determined from the incorporation of labeled sulfate (35SO4) into macromolecular material. In cultures of SV40-transformed cells, the glycosaminoglycan content per cell was constant over a wide range of densities. In cultures of parent 3T3 cells, the glycosaminoglycan content per cell increased directly with density, the highest values being found in contact-inhibited cultures. At high cell densities, the glycosaminoglycan content of 3T3 cells was several-fold higher than that for SV40-transformed cells. Most of the density-dependent increase in glycosaminoglycans of 3T3 cells was accounted for by chondroitin sulfate (dermatan sulfate) which was over 6-fold higher in confluent cultures than in low density cultures.  相似文献   

8.
C-1300 murine neuroblastoma cells release glycoproteins into the culture medium. The process was studied by prelabeling spinner cultures for 12 to 60 hours with [3H]glucosamine. Then, the medium was removed and replaced with fresh medium lacking radioactive isotope. Soluble material released into the medium during the subsequent 2-hour incubation was collected by trichloroacetic acid precipitation. The released proteins were then separated by discontinuous polyacrylamide gel electrophoresis in buffers containing sodium dodecyl sulfate. The electrophoretograms of glycoproteins obtained from cultures labeled for different lengths of time were very similar; three major radioactive regions centered about molecular weights 87,000, 66,000, and 55,000 were present. When spinner cells were transferred to monolayer culture in the presence of N6,O2' dibutyryl adenosine 3':5'-monophosphate (Bt2cAMP), differentiation (extension of neurites twice the diameter of the perikaryon) was observed. Monolayer cultures grown in the presence of Bt2cAMP and [3H]glucosamine for 12 hours released glycoproteins which gave a gel electrophoresis pattern similar to that obtained using spinner cultures. However, after 60 hours in the presence of Bt2cAMP and [3H]glucosamine, the released radioactive material consisted almost exclusively of glycoproteins of the 66,000 molecular weight class. Similar results were obtained if [3H]fucose was substituted for [3H]glucosamine, or if bromodeoxyuridine (which also induced differentiation) was substituted for Bt2cAMP. Similar experiments using radioactive amino acids were conducted with both spinner and monolayer cultures. Much of the released radioactive material was contained in the same three molecular weight classes as the glycoproteins released by spinner cells prelabeled with [3H]glucosamine, and this pattern did not vary with length of labeling period or type of culture. These results may imply that the glycosylation of released proteins is influenced by agents which can induce differentiation. The origin of this released material is discussed. [3H]Glucosamine-labeled glycoproteins of the molecular weight class centered about 55,000 (discussed above) were isolated by preparative gel electrophoresis. They co-migrated with authentic mouse brain microtubular protein as two closely spaced bands on a number of different electrophoretic systems. This protein fraction was also characterized as complexing with a monospecific antitubulin antibody.  相似文献   

9.
Mitotic activity in confluent cultures of human diploid fibroblasts was arrested by the reduction of the serum concentration of the incubation medium to 0.5% or by the addition of 0.5 mM 6-N, 2'-O-dibutyryl-adenosine 3':5'-cyclic monophosphate (db cAMP). Under either of these conditions, cultures maintained a constant cell number for 14 days; cultures continuously exposed to medium containing 10% serum doubled their cell number during this 14-day period. The protein cotent per cell decreased by 20% when cells were maintained with 0.5% serum whereas that of cells exposed to db cAMP remained constant. Ultrastructural studies revealed that cells exposed to db cAMP exhibited a morphology typical of cells cultures with 10% serum alone, whereas cells incubated with 0.5% serum showed the ultrastructural changes in mitochondria, endoplasmic reticulum and Golgi complex previously identified with low-serum arrest. Cellular adenosine 3':5'-cyclic monophosphate (cAMP) levels remained constant during the 7-day growth period in which confluency was attained, as well as during the 14-day arrested period with 0.5% serum. These results indicated that the mitotic inhibition induced by reducing the serum concentration of the incubation medium was not mediated by increased intracellular levels of cAMP and differed from that induced by the addition of exogenous db cAMP.  相似文献   

10.
We examined the effect of fibroblast growth factor (FGF) on proteoglycan synthesis by rabbit costal chondrocyte cultures maintained on plastic tissue culture dishes. Low density rabbit costal chondrocyte cultures grown in the absence of FGF gave rise at confluency to a heterogeneous cell population composed of fibroblastic cells and poorly differentiated chondrocytes. When similar cultures were grown in the presence of FGF, the confluent cultures organized into a homogenous cartilage-like tissue composed of rounded cells surrounded by a refractile matrix. The cell ultrastructure and that of the pericellular matrix were similar to those seen in vivo. The expression of the cartilage phenotype in confluent chondrocyte cultures grown from the sparse stage in the presence vs. absence of FGF was reflected by a fivefold increase in the rate of incorporation of [35S]sulfate into proteoglycans. These FGF effects were only observed when FGF was present during the cell logarithmic growth phase, but not when it was added after chondrocyte cultures became confluent. High molecular weight, chondroitin sulfate proteoglycans synthesized by confluent chondrocyte cultures grown in the presence of FGF were slightly larger in size than that produced by confluent cultures grown in the absence of FGF. The major sulfated glycosaminoglycans associated with low molecular weight proteoglycan in FGF-exposed cultures were chondroitin sulfate, while in cultures not exposed to FGF they were chondroitin sulfate and dermatan sulfate. Regardless of whether or not cells were grown in the presence or absence of FGF, the 6S/4S disaccharide ratio of chondroitin sulfate chains associated with high and low molecular weight proteoglycans synthesized by confluent cultures was the same. These results provide evidence that when low density chondrocyte cultures maintained on plastic tissue culture dishes are grown in the presence of FGF, it results in a stimulation of the expression and stabilization of the chondrocyte phenotype once cultures become confluent.  相似文献   

11.
Samiric T  Ilic MZ  Handley CJ 《The FEBS journal》2006,273(15):3479-3488
This study investigated the effects of two highly sulfated polysaccharides, calcium pentosan polysulfate and heparin, on the loss of newly synthesized proteoglycans from the matrix of explant cultures of bovine tendon. The tensional region of deep flexor tendon was incubated with [35S]sulfate for 6 h and then placed in culture for up to 15 days. The amount of radiolabel associated with proteoglycans lost to the medium and retained in the matrix was determined for each day in culture. It was shown that both sulfated polysaccharides at concentrations of 1000 microg x mL(-1) inhibited the loss of 35S-labeled large and small proteoglycans from the matrix and concomitant with this was a retention of chemical levels of proteoglycans in the explant cultures. In other explant cultures that were maintained in culture in the presence of both agents for more than 5 days after incubation with [35S]sulfate, inhibition of the intracellular catabolic pathway was evident, indicating that these highly sulfated polysaccharides also interfered with the intracellular uptake of small proteoglycans by tendon cells.  相似文献   

12.
Summary Mitotic activity in confluent cultures of human diploid fibroblasts was arrested by the reduction of the serum concentration of the incubation medium to 0.5% or by the addition of 0.5mm 6-N, 2′-O-dibutyryl-adenosine 3′:5′-cyclic monophosphate (db cAMP). Under either of these conditions, cultures maintained a constant cell number for 14 days; cultures continuously exposed to medium containing 10% serum doubled their cell number during this 14-day period. The protein content per cell decreased by 20% when cells were maintained with 0.5% serum whereas that of cells exposed to db cAMP remained constant. Ultrastructural studies revealed that cells exposed to db cAMP exhibited a morphology typical of cells cultured with 10% serum alone, whereas cells incubated with 0.5% serum showed the ultrastructural changes in mitochondria, endoplasmic reticulum and Golgi complex previously identified with low-serum arrest. Cellular adenosine 3′:5′-cyclic monophosphate (cAMP) levels remained constant during the 7-day growth period in which confluency was attained, as well as during the 14-day arrested period with 0.5% serum. These results indicated that the mitotic inhibition induced by reducing the serum concentration of the incubation medium was not mediated by increased intracellular levels of cAMP and differed from that induced by the addition of exogenous db cAMP.  相似文献   

13.
The effect of tunicamycin (TM) on the synthesis and secretion of sulfated proteoglycans and hyaluronate was examined in chick embryo fibroblasts and chondrocytes. The incorporation of the precursors [3H]glucosamine, [3H]mannose and [35S]sulfate into glycoconjugates in both the cell layer and medium of cultures was determined. In the chick embryo fibroblast, but not in the chondrocyte, synthesis of sulfated proteoglycan was inhibited 60–75% by TM (5 × 10−8 M), while synthesis of hyaluronate and protein was only inhibited slightly. The inhibition of sulfate incorporation into glycosaminoglycans of the chick embryo fibroblast was overcome to a great extent by addition of β-xyloside, which provides an exogenous initiator for chondroitin sulfate synthesis. TM treatment also altered cell shape and surface morphology in chick embryo fibroblasts, as observed by phase contrast and scanning electron microscopy (SEM). Cells treated with TM became rounded, and increased numbers of microvilli and blebs appeared on the cell surface. These alterations in cell morphology were reversed by removal of TM, but not by exogenous addition of xyloside, chondroitin sulfate or the adhesive cell surface glycoprotein fibronectin. These results demonstrate that TM inhibits synthesis of sulfated proteoglycans in the chick embryo fibroblast and causes a dramatic alteration in cell shape and surface morphology.  相似文献   

14.
Chondrogenesis was monitored in micromass cultures of mesenchymal cells derived from the distal tip of stage-25 chick limb buds over a 6-day period. Alcian green staining and immunofluorescent localization of cartilage-specific proteoglycans revealed the appearance of cartilage matrix by day 3 of cell culture. By day 6, cultures contained a uniform and homogeneous population of fully differentiated chondrocytes throughout the cell layer, with only a narrow rim of nonchondrogenic cells around the extreme periphery of the culture. Synthesis of sulfated glycosaminoglycans also progressively increased between days 3 and 6, being 8-fold higher at day 6 than at day 1 of culture. Both adenylate cyclase (AC) activity and cAMP concentrations increased dramatically during the first 2 days of culture, reaching maximal levels by day 2, which remained elevated and stable throughout the remaining chondrogenic period (days 3-6). Responsiveness of both AC and cAMP concentrations of the cells to PGE2 was maximal by day 1 of culture and was increased over control cells by 12-fold and 8-fold respectively. Both responses, however, were dramatically reduced by day 3, at which time the initiation of cartilage formation was apparent. Responsiveness of cells during the prechondrogenic period to PGE2 was relatively specific in that no effects could be demonstrated with equivalent concentrations of PGF2 alpha or 6-keto-PGF1 alpha, although PGl2 did produce increases in cAMP concentrations of about 50% of those of PGE2. These results indicate that previously reported changes in the cAMP system in heterogeneous cell cultures derived from whole limb buds reflect changes occurring in the chondrogenic cell type and indicate further that peak responsiveness of the cAMP system of these cells to prostaglandins is restricted to prechondrogenic developmental periods.  相似文献   

15.
One of the initial events required for the expression of cartilage-specific macromolecules in monolayer cultures is the reversion to the initial round shape of chondrocytes. Thus, considerable research efforts have focused on developing reliable procedures to maintain a round morphology of cultured chondrocytes. Our study focuses on evaluating the response of dedifferentiated fetal rat chondrocytes to cytochalasin D, an actin-disrupting agent, with special emphasis on the morphological events. Immediately after exposure to the drug, cells round up but flatten again after removing the agent. However, immunocytochemical procedures revealed a disorganization of microfilaments and intermediate filaments. Phase-contrast and scanning electron microscopic observations revealed that on day 6 of culture, cells located at the top of the cell layer adopted a spherical morphology. Prominent differences were noted in control cultures where cells had to aggregate prior to overt chondrogenesis. Transmission electron microscopy confirmed the round morphology of the cells situated at the top layer but also revealed the presence of cell contacts between the cells. In addition, cells located at the central part of the cell layer displayed a typical morphology of mature chondrocytes, separated by an extensive extracellular matrix. These morphological changes occurred parallel to the expression of type II collagen and chondroitin sulfate, both hallmarks of the chondrocyte phenotype strong in experimental cultures, relatively weak in control cultures, and only restricted on areas of polygonal cellular aggregates. Furthermore, [35S]-sulfate incorporation into sulfated glycosaminoglycans increased rapidly with the period of culture to a maximum after 7 days and was then two-fold in treated cultures. Taken together, these findings indicated that cytochalasin D stimulates chondrogenesis in response to modification of cytoskeleton architecture and the subsequent rounding up of the cells.  相似文献   

16.
The synthesis of metabolically labeled proteoglycans and glycosaminoglycans from medium, cell layer and substrate attached material by rat glomerular mesangial cells in culture was characterized. The cellular localization of the labeled proteoglycans and glycosaminoglycans was determined by treating the cells with Flavobacterial heparinase. Of the total sulfated glycosaminoglycans, 33% were heparan sulfate; 55% of the cell layer material was heparan sulfate; 80% of sulfated proteins in the medium were chondroitin sulfate/dermatan sulfate. Putative glycosaminoglycan free chains of heparan sulfate and chondroitin sulfate were found in both the medium and cell layer; 95% of total proteoglycans and most (90%) of the putative heparan sulfate free chains were removed from the cell layer by the heparinase, whereas only 50% of the chondroitin sulfate and 25% of dermatan sulfate were removed. Large amounts of hyaluronic acid labeled with 3H glucosamine were found in the cell layer. In summary, approximately 60% of total sulfated glycoproteins was in the form of putative glycosaminoglycan free chains. Thus rat mesangial cells may synthesize large amounts of putative glycosaminoglycan free chains, which may have biological functions in the glomerulus independent of proteoglycans.  相似文献   

17.
Sulfated glycosaminoglycans (GAGs) are distributed in consistent and distinctive patterns between the cell surface and the growth medium of haemopoietically active long-term bone marrow cultures. Heparan sulfate is the main cell surface component and chondroitin sulfate is the major sulfated species in the medium. When the cultures are supplemented with beta-D-xylosides a significant increase in chondroitin sulfate synthesis is observed but no stimulation of heparan sulfate synthesis occurs. The chondroitin sulfate accumulates in the culture medium in beta-D-xyloside-treated cultures but the composition of sulfated GAGs in cell-surface derived material is unaffected. beta-D-xylosides also stimulate the production of haemopoietic cells without any apparent alteration in the adherent stromal cells of the marrow cultures. Equivalent increases are obtained in cells at all stages of development so that a fivefold increase in pluripotent stem cells (CFU-S) is matched by fivefold increase in the granulocyte-macrophage progenitors (GM-CFC) and in mature granulocytes. The stimulation persists for many weeks in beta-D-xyloside-treated cultures. These results indicate that the sulfated GAGs may play an important role in the regulation of haemopoiesis.  相似文献   

18.
Prior to ovulation, the cumulus cells that surround the oocyte become embedded in a matrix containing hyaluronic acid (HA). Sulfated glycosaminoglycans (GAGs) prevent the hormonally stimulated deposition of this matrix in vitro. The goal of this project was to determine the effect of sulfated GAGs on the HA-synthesizing activity of the cumuli oophori. This activity was measured in lysates of mouse cumuli oophori after stimulation of isolated cumulus cell-oocyte complexes with follicle-stimulating hormone (FSH) in the presence or absence of sulfated GAGs. FSH treatment resulted in a 5-fold stimulation of HA-synthesizing activity by 3 h in vitro. This induction was inhibited in a dose-dependent manner by heparin and chondroitin sulfate B. However, addition of heparin or chondroitin sulfate B to the assay mixtures containing lysates of FSH-stimulated cumuli oophori had no effect on the HA-synthesizing activity. Heparin also suppressed HA-synthesizing activity stimulated by dibutyryl cyclic adenosine monophosphate. Heparin inhibited the continued increase in hyaluronic acid synthesizing activity when added to cultures after 3 h of FSH stimulation. Also, addition of heparin to cultures of cumuli oophori after 3 or 6 h of incubation in medium containing FSH resulted in only partial cumulus expansion. These results indicate that sulfated GAGs, which are found in ovarian follicular fluid and are a component of extracellular matrix, inhibit some cellular process(es) that results in increased HA-synthesizing activity. The sulfated GAGs also have the ability to suppress HA-synthesizing activity after it has been induced to levels that result in partial cumulus expansion. However, the sulfated GAGs are not direct enzyme inhibitors.  相似文献   

19.
Synthesis and release of sulfated glycoproteins by cultured glial cells   总被引:1,自引:0,他引:1  
Both primary cultured glial cells and cloned (C-6) glioma cells have been shown to synthesize and release sulfated glycoproteins. It was found that N-linked tri- and tetra-antennary glycopeptides recovered from the glycoproteins contained most of the (35S) sulfate label. C-6 glial cells showed a higher rate of oligosaccharide sulfation than the primary glial cultures. Both cell types exhibited a high rate of release of sulfated glycoproteins into the medium. The ratio of 35S/3H incorporated from (35S) sulfate and (3H) glucosamine in the released material was higher than that of the glycoproteins associated with the cell, indicating an enrichment of sulfated glycoproteins in the secreted materials. Monensin inhibited both the synthesis and the release of sulfated glycoproteins.  相似文献   

20.
Three biopsies of medullary carcinoma of the thyroid were grown in monolayer culture. All three cultures initially released high levels of calcitonin into the medium, but the conretion from the culture cells was not stimulated when the medium calcium concentration was increased from 1.8 to 3.6 mEq/L. Four peaks of calcitonin immunoreactivity were found when the culture medium of one cell line was fractionated by gel filtration on Bio-Gel P-10. This closely corresponded to the heterogeneous molecular profile of calcitonin in the serum of this patient and other patients with medullary carcinoma of the thyroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号