首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Human immunodeficiency virus type 1 (HIV-1) gene expression and replication is highly dependent on and modulated by interactions between viral and host cellular factors. Tat protein, encoded by one of the HIV-1 regulatory genes, tat, is essential for HIV-1 gene expression. A number of host cellular factors have been shown to interact with Tat in this process. During our attempts to determine the molecular mechanisms of Tat interaction with brain cells, we isolated a cDNA clone that encodes a novel Tat-interacting protein of 110 kDa or Tip110 from a human fetal brain cDNA library. GenBank BLAST search revealed that Tip110 was almost identical to a previously cloned KIAA0156 gene with unknown functions. In vivo binding of Tip110 with Tat was confirmed by immunoprecipitation and Western blotting, in combination with mutagenesis. The yeast three-hybrid RNA-protein interaction assay indicated no direct interaction of Tip110 with Tat transactivating response element RNA. Nevertheless, Tip110 strongly synergized with Tat on Tat-mediated chloramphenicol acetyltransferase reporter gene expression and HIV-1 virus production, whereas down-modulation of constitutive Tip110 expression inhibited HIV-1 virus production. Northern blot analysis showed that Tip110 mRNA was expressed in a variety of human tissues and cells. Moreover, digital fluorescence microscopic imaging revealed that Tip110 was expressed exclusively in the nucleus, and within a nuclear speckle structure that has recently been described for human cyclin T and CDK9, two critical components for Tat transactivation function on HIV-1 long terminal repeat promoter. Taken together, these data demonstrate that Tip110 regulates Tat transactivation activity through direct interaction, and suggest that Tip110 is an important cellular factor for HIV-1 gene expression and viral replication.  相似文献   

6.
The androgen receptor (AR) is a member of the nuclear receptor (NR) superfamily that mediates the effects of androgens on target tissues. Over the last decade, it has become apparent that NRs require accessory factors for optimal activation of target gene expression. Numerous NR coregulators have been identified, with diverse structures and potential mechanisms of coregulation, creating an increasingly complicated picture of NR action. Due to the expanding complexity of the coregulator field, this review will focus on the AR ligand-binding domain (LBD) and N-terminal interacting proteins identified by our lab. The LBD-interacting proteins ARA70, ARA55 and ARA54 were first characterized and ARA70 was found to have a relatively higher specificity for the AR in human prostate cancer DU145 cells. Characterization of the functional relationship between the AR and these coregulators indicated that ARA70 and ARA55 could enhance the androgenic effects of 17beta-estradiol (E2) and hydroxyflutamide (HF), an antiandrogen commonly used in the treatment of prostate cancer. ARA160, an AR N-terminal interacting protein also known as TATA element modulatory factor (TMF), was subsequently shown to cooperate with ARA70 in enhancing AR activity. Another AR N-terminal interacting protein, ARA24, interacted with the poly-Q tract, a region within the N-terminus of the AR linked to Kennedy's disease (X-linked spinal and bulbar muscular atrophy). More recently, our lab has identified ARA267, a SET domain containing protein, and supervillin, an F-actin binding protein, as AR coregulators. Collectively, the data from these studies indicate that these coregulators are necessary for optimal AR transactivation. Interruption of the interaction between AR and these proteins may serve as a new therapeutic target in the treatment of prostate cancer.  相似文献   

7.
8.
9.
10.
11.
12.
A need for androgen response elements (AREs) for androgen receptor (AR)-dependent growth of hormone depletion-insensitive prostate cancer is generally presumed. In such cells, androgen-independent activation by AR of certain genes has been attributed to selective increases in basal associations of AR with putative enhancers. We examined the importance of AR binding to DNA in prostate cancer cells in which proliferation in the absence of hormone was profoundly (~ 90%) dependent on endogenous AR and where the receptor was not up-regulated or mutated but was predominantly nuclear. Here, ARE-mediated promoter activation and the binding of AR to a known ARE in the chromatin remained entirely androgen dependent, and the cells showed an androgen-responsive gene expression profile with an unaltered sensitivity to androgen dose. In the same cells, a different set of genes primarily enriched for cell division functions was activated by AR independently of hormone and significantly overlapped the signature gene overexpression profile of hormone ablation-insensitive clinical tumors. After knockdown of endogenous AR, hormone depletion-insensitive cell proliferation and AR apoprotein-dependent gene expression were rescued by an AR mutant that was unable to bind to ARE but that could transactivate through a well-established AR tethering protein. Hormone depletion-insensitive AR binding sites in the chromatin were functional, binding, and responding to both the wild-type and the mutant AR and lacked enrichment for canonical or noncanonical ARE half-sites. Therefore, a potentially diverse set of ARE-independent mechanisms of AR interactions with target genes must underlie truly hormone depletion-insensitive gene regulation and proliferation in prostate cancer.  相似文献   

13.
14.
15.
16.
17.
Z Sun  J Pan    S P Balk 《Nucleic acids research》1997,25(16):3318-3325
An increasing number of proteins which bind to hormone-dependent nuclear receptors and mediate their effects on gene expression are being identified. The human prostate-specific antigen (PSA) and kallikrein 2 (KLK2) genes are regulated by the androgen receptor (AR). Using electrophoresis mobility shift assays (EMSA), a common nuclear protein(s) which binds upstream of the androgen-responsive elements (AREs) in the PSA and KLK2 promoters was identified. Binding occurred between bp -539 and -399 and bp -349 and -224 in the PSA and KLK2 promoters respectively, which were shown previously to be necessary for AR-mediated transactivation. Glutathione S-transferase (GST)-AR fusion proteins were constructed to determine whether the AR interacted directly with this protein or protein complex. Specific interactions were observed with AR fusion proteins containing the DNA binding domain. EMSA supershift experiments and GST-AR pull-down experiments followed by Western blotting identified a Fos-related protein(s) of approximately 40 kDa as part of this complex. Competition experiments with a double-stranded oligonucleotide containing an AP-1 binding site demonstrated that DNA binding was not mediated by AP-1. These results indicate that a Fos-containing protein complex distinct from AP-1 binds upstream of the AREs in the PSA and KLK2 promoters, interacts with the AR and may participate in regulation of these two androgen-responsive genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号