首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Suspension-feeding fishes use gill structures for both respiration (lamellae) and food capture (rakers). During hypoxic exposure in eutrophic lakes or poorly circulated sloughs, many fishes, including Sacramento blackfish, Orthodon microlepidotus, increase their gill water flows, in part by increasing ventilatory stroke volumes. Stroke volume increases could compromise particle sieving efficiency by spreading interdigitated gill rakers from adjacent gill arches, although blackfish capture food particles by raker-guided water flows to a sticky buccal root. Using van Dam-type respirometers, blackfish respiratory variables and feeding efficiency (Artemia nauplii) were measured under normoxia (> 130 torr PO2) and hypoxia (60 torr PO2). Compared with non-feeding, normoxic conditions, gill ventilation volume, frequency, stroke volume, and gape all increased, while O2 uptake efficiency decreased, during hypoxia and during feeding. O2 consumption increased during feeding treatments, and % uptake of nauplii showed no difference between normoxic and hypoxic groups. Thus, blackfish display respiratory adaptations, including increased ventilatory stroke volumes, to survive in hypoxic environments such as Clear Lake, California. Importantly, they have also evolved a particle capture mechanism that allows efficient suspension-feeding under both normoxic and hypoxic conditions.  相似文献   

2.
Oxygen consumption (o2) and respiratory variables were measured in the Prochilodontid fish, Prochilodus scrofa exposed to graded hypoxia after changes in temperature. The measurements were performed on fish acclimated to 25°C and in four further groups also acclimated to 25°C and then changed to 15, 20, 30 and 35°C. An increase in o2 occurred with rising temperature, but at each temperature o2 was kept constant over a wide range of O2 tensions of inspired water ( Pi o2). The critical oxygen tensions ( Pc o2) were Pi o2= 22 mmHg for 25°C acclimated specimens and after transfer from 25°C to 15, 20, 30 and 35°C the Pc o2 changed to Pi o2= 28, 22, 24 and 45 mmHg, respectively. Gill ventilation ( G ) increased or decreased following the changes in o2 as the temperature changed and was the result of an accentuated increase in breath frequency. During hypoxia the increases in G were characterized by larger increases in breath volume. Oxygen extraction was kept almost constant at about 63% regardless of temperature and ambient oxygen tensions in normoxia and moderate hypoxia ( P o2∼70 mmHg). P. scrofa showed high tolerance to hypoxia after abrupt changes in temperature although its survival upon transfer to 35°C could become limited by the capacity of ventilatory mechanisms to alleviate hypoxic stress.  相似文献   

3.
The oxygen uptake ( V O2), breathing frequency ( f R), breath volume ( V S.R), gill ventilation ( V G) and oxygen extraction (%) from the ventilatory current of four groups of Oreochromis niloticus during graded hypoxia were measured under the following acclimation temperatures: 20. 25. 30 and 35°C. The critical oxygen tensions ( P O2), determined from V O2 v. P O2 of inspired water at each experimental temperature were, respectively. 19±1±3±1. 18±0±4±9, 29±7± 4±1 and 30±2± 0.6 mmHg. The f R remained nearly constant during the reductions of O2 at all the temperatures studied. V G increased discretely from normoxic levels until the P O2 was reached, below which it assumed extremely high values (17-fold higher or more). The increases observed in V G resulted, at all the acclimation temperatures, in an elevation in V S.R rather than in f R. The extraction of O2 decreased gradually from normoxia until the P O2 was reached, below which an abrupt reduction of extraction was recorded, except at 35°C when fish showed a gradual reduction in extraction just below the tension of 80 mmHg.  相似文献   

4.
Ventilation volume, ventilatory frequency, ventilatory stroke volume, percentage utilization of oxygen and respiratory metabolism were measured on unanaesthetized striped mullet, Mugil cephalus L., under ambient and hypoxic conditions with a modified van Dam respiration chamber. Hypoxia caused a statistically significant increase in ventilation volume, ventilatory frequency, and ventilatory stroke volume and a significant decrease in percentage utilization of oxygen. The routine rate of respiratory metabolism was not significantly altered by hypoxia. These responses probably represent ventilatory adjustments which serve to maintain a constant oxygen supply to the gills under conditions of oxygen depletion.  相似文献   

5.
Rhinelepis strigosa did not surface for air breathing in normoxic or moderate hypoxic water. This species initiated air breathing when the P io2 in the water reached 22 ± 1 mmHg. Once begun, the air-breathing frequency increased with decreasing P io2. Aquatic oxygen consumption was 21·0 ± 1·9ml O2 kg−1h−1 in normoxic water, and was almost constant during progressive hypoxia until the P io2 reached 23·9 mmHg, considered the critical oxygen tension (Pco2). Gill ventilation increased until close to the P co2 (7·9-fold) as a consequence of a greater increase in ventilatory volume than in breathing frequency. Gill oxygen extraction was 42 ± 5% and decreased with hypoxia, but under severe hypoxia returned to values characteristic of normoxic. The critical threshold for air breathing was coincident with the Pco2 during aquatic respiration. This suggests that the air-breathing response is evoked by the aquatic oxygen tension at which the respiratory mechanisms fail to compensate for environmental hypoxia, and the gill O2 uptake becomes insufficient to meet O2 requirements.  相似文献   

6.
When exposed to severely hypoxic water, many teleosts skim the better oxygenated surface layer (aquatic surface respiration, ASR). Information is scarce concerning the thresholds triggering ASR and its cardio-respiratory consequences. To assess the ambient conditions leading to ASR and to evaluate its effects on cardio-respiratory function, we exposed specimens of Piaractus mesopotamicus to gradual hypoxia (water oxygen tension ranging from 120 to 10 torr) with or, alternatively, without access to the surface. Concurrently, ASR, cardiac and respiratory frequencies, O2 uptake and gill ventilation were monitored. With surface access, ASR developed below the critical tension for O2 uptake (34 torr) by normal gill ventilation. Moreover, the time spent in ASR increased with prolonged hypoxic exposure to a maximum of 95% of total time. Without surface access, the species exhibited hypoxic bradycardia, that had not occurred in the group with fully developed ASR. Even without ASR, P. mesopotamicus recovered readily from hypoxic exposure, showing that this species possesses a number of mechanisms to cope with environmental hypoxia.  相似文献   

7.
The bimodally respiring catfish Clarias macrocephalus Günther responded to a toxic extract of Croton tiglium (Euphorbiaceae) seeds by increased air breathing under both normoxic (8.1 ± 0.4 mgO2 l−1) and hypoxic (0.7 ± 0.1 mgO2l−1) conditions. Fish in hypoxia survived longer than those in normoxia when surface access was provided. When air breathing was prevented, survival time in toxin was greatly reduced at both levels of dissolved oxygen, and fish in normoxia survived longer than those in hypoxia. Non-toxin controls without surface access survived in normoxia but in hypoxia died at the same time as the fish in toxin. These results suggest that air breathing increases the resistance offish to toxins by permitting a decrease in the rate of gill ventilation and hence the rate at which toxins are absorbed.  相似文献   

8.
Behavioural and metabolic reactions of Pomatoschistus minutus (Pallas) exposed to various degrees of hypoxia were studied. At 15°C and 20‰ mortality was 50% at 15.2% oxygen saturation. Avoidance and oxygen saturation showed a linear inverse relationship. At levels lower than 60% saturation increased activity occurred; avoidance was significant at 30% saturation. Active, routine and standard MO2 correlated linearly with weight at 6 and 15°C (salinity = 19‰). During hypoxia at 15°C routine MO2 rose significantly at 60–50% and 40–30% saturation expressed either as MO2 during longer periods at night or MO2 at shorter intervals during the day. Standard MO2 was unaffected by hypoxia at 15°C. Haemoglobin concentration was significantly increased when P. minutus was acclimatized to 35% saturation.  相似文献   

9.
Critical swimming speed ( U crit) and rate of oxygen consumption of Pacific cod Gadus macrocephalus acclimated to 4 and 11° C were determined to assess the influence of water temperature on performance. The physiological effect of exercise trials on fish held at two temperatures was also assessed by comparing haematocrit and plasma concentrations of cortisol, metabolites and ions collected from fish before and after testing. The U crit of fish acclimated and exercised at 4° C did not differ from those acclimated and exercised at 11° C [1·07 body lengths (total length) s−1]. While the standard metabolic rate of 11° C acclimated fish was 28% higher than that of 4° C fish, no significant difference was observed between fish acclimated at the two temperatures. Plasma concentrations of cortisol, glucose and lactate increased significantly from pre- to post-swim in both groups, yet only concentrations of cortisol differed significantly between temperature treatments. Higher concentrations of cortisol in association with greater osmoregulatory disturbance in animals acclimated at the lower temperature indicate that the lower water temperature acted as an environmental stressor. Lack of significant differences in U crit between temperature treatments, however, suggests that Pacific cod have robust physiological resilience with respect to swimming performance within temperature changes from 4 to 11° C.  相似文献   

10.
Variation in respiratory traits was quantified between two populations of the sailfin molly Poecilia latipinna (one from a periodically hypoxic salt marsh, Cedar Key, and one from a chronically normoxic river site, Santa Fe River). Two suites of characters were selected: traits that may show both short‐term acclimation response and interdemic variation in acclimation response (metabolic rate, critical oxygen tension and respiratory behaviour), and those that are not likely to respond to short‐term acclimation but may vary among populations (gill morphometric characters). Sailfin mollies from the salt marsh, acclimated to hypoxia (1 mg l−1, c . 20 mmHg) for 6 weeks, spent less time conducting aquatic surface respiration and had lower gill ventilation rates than hypoxia‐acclimated conspecifics from the well‐oxygenated river site. Poecilia latipinna acclimated to hypoxia exhibited a lower critical oxygen tension ( P c) than fish acclimated to normoxia; however, there was also a significant population effect. Poecilia latipinna from Cedar Key exhibited a lower P c than fish from the Santa Fe River, regardless of acclimation. Cedar Key fish had a 14% higher mean gill surface area relative to fish from the Santa Fe River, a character that could account, at least in part, for their greater tolerance to hypoxia.  相似文献   

11.
ABSTRACT. In an ambient temperature ( T a) range of 18–28°C, thoracic temperatures ( T th) of individual male Lymantria dispar (L.), caught at flight in the field, ranged from 21 to 36.5°C, with a correlation coefficient of 0.63 between T th and ambient temperature ( T a). Ambient temperature (and insolation) altered the insect's body temperature and the probabilities, latencies, and durations of preflight responses to pheromone. In a wind tunnel at 16 and 20°C, quiescent males exposed to pheromone raised their T th by sustained wing fanning from 17 and 21°C, respectively, to c. 24°C before takeoff. At 24 and 28°C ambient, T th rose by takeoff to 28 and 31°C, respectively. The latencies of male wing fanning in response to pheromone decreased from 1.44 min at 16°C ambient, to 0.58 min at 20°C, to 0.26 min at 24°C, and to 0.16min at 28°C. The components of behaviour (antennal twitch, body jerk, step and wing tremor) that occurred between quiescence and wing fanning were more frequent at ambients of 16 and 20°C than at 24 and 28°C.  相似文献   

12.
Abstract The effect of temperature on CH4 production, turnover of dissolved H2, and enrichment of H2-utilizing anaerobic bacteria was studied in anoxic paddy soil and sediment of Lake Constance. When anoxic paddy soil was incubated under an atmosphere of H2/CO2, rates of CH4 production increased 25°C, but decreased at temperatures lower than 20°C. Chloroform completely inhibited methano-genesis in anoxic paddy soil and lake sediment, but did not or only partially inhibit the turnover of dissolved H2, especially at low incubation temperatures. Cultures with H2 as energy source resulted in the enrichment of chemolithotrophic homoacetogenic bacteria whenever incubation temperatures were lower than 20°C. Hydrogenotrophic methanogens could only be enriched at 30°C from anoxic paddy soil. A homoacetogen  相似文献   

13.
The mean rate of oxygen consumption (routine respiration rate, R R, mg O2 fish−1 h−1), measured for individual or small groups of haddock Melanogrammus aeglefinus (3–12 cm standard length, L S) maintained for 5 days within flow‐through respiratory chambers at four different temperatures, increased with increasing dry mass ( M D). The relationship between R R and M D was allometric ( R R = α  M b ) with b values of 0·631, 0·606, 0·655 and 0·650 at 5·0, 8·0, 12·0 and 15·0° C, respectively. The effect of temperature ( T ) and M D on mean R R was described by     indicating a Q 10 of 2·27 between 5 and 15° C. Juvenile haddock routine metabolic scope, calculated as the ratio of the mean of highest and lowest deciles of R R measured in each chamber, significantly decreased with temperature such that the routine scope at 15° C was half that at 5° C. The cost of feeding ( R SDA) was c . 3% of consumed food energy, a value half that found for larger gadoid juveniles and adults.  相似文献   

14.
ABSTRACT. The influence of hypoxia and hypercapnia on the ventilatory rhythm of the hellgrammite Corydalus cornutus L. (Megaloptera) was studied. In intact animals the frequency of rhythmic retractions and protractions of abdominal gills is increased by hypoxia (10% O2, 90% N2) but no ventilatory response is elicited by hypercapnia (1–5% CO2, 20% O2, 75–79% N2).
The ventilatory motor pattern was examined by recording extracellularly from the gill retractor muscle or its efferent nerve. In response to hypoxia (8% 02, 92% N2), there are decreases in the cycle-time, the interspike interval, and the burst length of the gill retractor motorneuron. In addition, previously quiescent motorneurons associated with gill protraction are recruited.
Individual ganglia or small groups of abdominal ganglia can be isolated both from the central ganglionic chain and from the periphery by selective cutting of roots and connectives. When exposed to hypoxia, preparations that include the first abdominal ganglion show characteristic changes in the ventilatory motor pattern similar to those in intact animals. Thus sensitivity to oxygen appears to be located centrally and not peripherally. In small animals (head width < 7 mm), abdominal ganglia 2–3 and 2–7 respond characteristically to hypoxia, but in larger animals (head width > 9 mm), chains of ganglia lacking abdominal ganglion 1 fail to respond. In larger animals oxygen sensitivity may thus be concentrated in abdominal ganglion 1, whereas in smaller animals the ability to initiate a ventilatory response to hypoxia is distributed among the abdominal ganglia.  相似文献   

15.
Summary Heart, ventilation and oxygen consumption rates ofLeiopotherapon unicolor were studied at temperatures ranging from 5 to 35°C, and during progressive hypoxia from 100% to 5% oxygen saturation. Biopotentials recorded from the water surrounding the fish corresponded to ventilation movements, and are thought to originate from the ventilatory musculature. Cardio-respiratory responses to temperature and dissolved oxygen follow the typical teleost pattern, with bradycardia, increased ventilation rate and reduced oxygen consumption occurring during hypoxia. However, ventilation rate did not increase at 15°C and below. Ventilation rate showed a slower response to increasing temperature (normoxic Q10=1.39) than heart rate and oxygen consumption (normoxic Q10=2.85 and 2.38).L. unicolor is unable to survive prolonged hypoxia by utilising anaerobic metabolism, but has a large gill surface area which presumably facilitates oxygen uptake in hypoxic environments. Periodic ventilation during normoxia in restingL. unicolor may improve ventilation efficiency by increasing the oxygen diffusion gradient across the gills.Abbreviations EBG electrobranchiogram - ECG electrocardiogram  相似文献   

16.
Predominantly, Hoplias malabaricus inhabits stagnant O2 poor environments, whereas Hoplias lacerdae occurs in well-aerated streams. The present study evaluates the influence of mode of life on O2 uptake and gill ventilation in equally-sized (300 g) specimens of this genus at 25° C. Comparing the species, H. lacerdae was characterized by the highest O2 uptake and gill ventilation combined with a relatively higher cost of breathing and a lower O2 extraction. Both species substantially increased ventilation in response to hypoxia with the difference that H. malabaricus exclusively augmented tidal volume, whereas H. lacerdae also increased breathing frequency.  相似文献   

17.
The solubility of carbon dioxide (CO2) in microbiological media at different pH values, water activities ( aw ), temperatures, buffering capacities and ratios of headspace to media volumes was determined by using a coulometer. Buffering capacity and ratio of headspace to media volume were shown to be the major factors influencing the solubility of CO2 in modified atmosphere model systems. The growth inhibitory effects of different dissolved CO2 concentrations (0–50 μmol ml-1) were determined for Pseudomonas fragi at 8°C and 22 C. Pseudomonas fragi was shown to be strongly affected by the CO2 concentration in the media. A carbon dioxide concentration of 40 μmol ml-1 was needed to inhibit Ps. fragi at 8°C. The importance of measuring dissolved CO2 concentrations in modified atmosphere packaging applications was shown and the coulometer proved to be an excellent tool for this purpose.  相似文献   

18.
Goldsinny Ctenolabrus rupestris were subjected to rapid, environmentally realistic, reductions in temperature at 2° C increments from 10 to 4° C over a 3-day period in full-strength sea water. In separate experiments, oxygen uptake measurements and ultrasound recordings of heart rate and opercular motion were carried out at regular intervals over the same temperature regime. Mean oxygen uptake rates fell from 0.042 to 0.028 ml O2 g−1 h−1 between 10 and 6° C respectively (Q10=2.71). Between 6 and 4° C mean rates decreased from 0.028 to 0.008 ml O2 g−1 h−1 (Q10=542). Mean opercular motion and heart beat rates decreased from 49.5 and 60.3 beats min−1 respectively at 10° C to 18.7 and 18.0 beats min−1 respectively at 4° C. Most goldsinny subjected to 4° C were observed in a torpid state and would not react to external stimulation. Opercular motion was erratic at 4° C and would at times cease altogether for periods up to 1.3 min duration. Heart movement was diffcult to detect at 4° C and may also have ceased for prolonged periods. Q10 values for opercular motion and heart beat rates recorded between 6 and 4° C were 6.39 and 24.52 respectively compared with values of 2.42 and 2.93 respectively recorded between 10 and 8° C. Such large depressions in metabolism appear not to have been reported previously for a marine fish species. No goldsinny mortalities were recorded at any temperature. The possibility that hypometabolic torpor is an adaptive strategy for goldsinny survival at low environmental temperatures is discussed.  相似文献   

19.
Aquatic and aerial respiration of the amphibious fishes Lipophrys pholis and Periophthalmus barbarus were examined using a newly designed flow-through respirometer system. The system allowed long-term measurements of oxygen consumption and carbon dioxide release during periods of aquatic and aerial respiration. The M o 2 of L. pholis , measured at 15° C, was 2·1 μmol O2 g–1 h–1 during aquatic and 1·99 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the M co2 were 1.67 and 1.59 μmol O2 g–1 h–1 respectively, giving an aquatic respiratory exchange ratio (RER) of 0·80 and an aerial RER of 0·79. The M o2 of P. barbarus , measured at 28°C, was 4·05 μmol O2 g–1 h–1 during aquatic and 3·44 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the Mco2 were 3·29 μmol CO2 g–1 h–1 and 2·63 μmol CO2 g–1 h–1 respectively, giving an aquatic RER of 0·81 and an aerial RER of 0·77. While exposed to air for at least 10 h, both species showed no decrease in metabolic rate or carbon dioxide release. The RER of these fishes equalled their respiratory quotient. After re-immersion an increased oxygen consumption, due to the payment of an oxygen debt, could not be detected.  相似文献   

20.
Discontinuous gas exchange cycles (DGCs), active muscular ventilation, microcycles of repetitive openings, and heartbeats of diapausing adult Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), were studied at low temperatures (0, 5, and 10 °C) using an electrolytic respirometer combined with an infrared actograph. The DGC of the adult constriction-flutter-open type was the main respiration mode in fully quiescent beetles at temperatures from 5 to 10 °C. The CO2 bursts were actively ventilated at temperatures above 5 °C. During the flutter period, a series of microcycles appeared, but no muscular contractions associated with the microcycles were detected. We identified this respiration mode as discontinuous suction ventilation.
The hydration condition of the beetles did not influence the frequency of the gas exchange cycles, but dehydrated beetles showed significantly longer flutter periods and shorter ventilation periods than hydrated beetles. The heartbeat frequencies were influenced by both temperature and hydration status.
We conclude from the results that DGCs are used at rest in adult L. decemlineata under various environmental conditions and also at low temperatures. Our results showed that DGCs are the main respiration mode of resting adult Colorado potato beetle irrespective of its hydration state and temperature. Our method resolves O2 uptake and subsequent CO2 release in flutter and ventilation periods and shows that diffusion is replaced by convection to reduce water loss in adult beetles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号