首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concanavalin A (ConA) kills the procyclic (insect) form of Trypanosoma brucei by binding to its major surface glycoprotein, procyclin. We previously isolated a mutant cell line, ConA 1-1, that is less agglutinated and more resistant to ConA killing than are wild-type (WT) cells. Subsequently we found that the ConA resistance phenotype in this mutant is due to the fact that the procyclin either has no N-glycan or has an N-glycan with an altered structure. Here we demonstrate that the alteration in procyclin N-glycosylation correlates with two defects in the N-linked oligosaccharide biosynthetic pathway. First, ConA 1-1 has a defect in activity of polyprenol reductase, an enzyme involved in synthesis of dolichol. Metabolic incorporation of [3H]mevalonate showed that ConA 1-1 synthesizes equal amounts of dolichol and polyprenol, whereas WT cells make predominantly dolichol. Second, we found that ConA 1-1 synthesizes and accumulates an oligosaccharide lipid (OSL) precursor that is smaller in size than that from WT cells. The glycan of OSL in WT cells is apparently Man9GlcNAc2, whereas that from ConA 1-1 is Man7GlcNAc2. The smaller OSL glycan in the ConA 1-1 explains how some procyclin polypeptides bear a Man4GlcNAc2 modified with a terminal N-acetyllactosamine group, which is poorly recognized by ConA.  相似文献   

2.
3.
Procyclins are abundant, glycosylphosphatidylinositol (GPI)-anchored proteins on the surface of procyclic (insect) form trypanosomes. To investigate whether trypanosomes are able to survive without a procyclin coat, all four procyclin genes were deleted sequentially. Bloodstream forms of the null mutant exhibited no detectable phenotype and were able to differentiate to procyclic forms. Initially, differentiated null mutant cells were barely able to grow, but after an adaptation period of 2 mo in culture they proliferated at the same rate as wild-type trypanosomes. Analysis of these culture-adapted null mutants revealed that they were covered by free GPIs. These were closely related to the mature procyclin anchor in structure and were expressed on the surface in numbers comparable with that of procyclin in wild-type cells. However, free GPIs were smaller than the procyclin anchor, indicative of a lower number of poly-N-acetyllactosamine repeats, and a proportion contained diacylphosphatidic acid. Free GPIs are also expressed by wild-type cells, although to a lesser extent. These have been overlooked in the past because they partition in a solvent fraction (chloroform/water/methanol) that is normally discarded when GPI-anchored proteins are purified.  相似文献   

4.
We employed a genetic approach to study protein glycosylation in the procyclic form of the parasite Trypanosoma brucei. Two different mutant parasites, ConA 1-1 and ConA 4-1, were isolated from mutagenized cultures by selecting cells which resisted killing or agglutination by concanavalin A. Both mutant cells show reduced concanavalin A binding. However, the mutants have different phenotypes, as indicated by the fact that ConA 1-1 binds to wheat germ agglutinin but ConA 4-1 and wild type do not. A blot probed with concanavalin A revealed that many proteins in both mutants lost the ability to bind this lectin, and the blots resembled one of wild type membrane proteins treated with PNGase F. This finding suggested that the mutants had altered asparagine- linked glycosylation. This conclusion was confirmed by studies on a flagellar protein (Fla1) and procyclic acidic repetitive protein (PARP). Structural analysis indicated that the N- glycan of wild type PARP is exclusively Man5GlcNAc2 whereas that in both mutants is predominantly a hybrid type with a terminal N- acetyllactosamine. The occupancy of the PARP glycosylation site in ConA 4-1 was much lower than that in ConA 1-1. These mutants will be useful for studying trypanosome glycosylation mechanisms and function.   相似文献   

5.
Trypanosoma brucei, the parasite causing human sleeping sickness, relies on the tsetse fly for its transmission. In the insect, EP and GPEET procyclins are the major surface glycoproteins of procyclic (midgut) forms of the parasite, with GPEET predominating in the early procyclic form and two isoforms of EP in the late procyclic form. EP procyclins were previously detected on salivary gland trypanosomes, presumably epimastigotes, by immunoelectron microscopy. However, no procyclins could be detected by mass spectrometry when parasites were isolated from infected glands. We have used qualitative and quantitative RT-PCR to analyse the procyclin mRNAs expressed by trypanosomes in the tsetse midgut and salivary glands at different time points after infection. The coding regions of the three EP isoforms (EP1, EP2 and EP3) are extremely similar, but their 3' untranslated regions contain unique sequences that make it possible to assign the cDNAs amplified by this technique. With the exception of EP2, we found that the spectrum of procyclin mRNAs expressed in the midgut mirrors the protein repertoire of early and established procyclic forms. Surprisingly, procyclin mRNAs, including that of GPEET, are present at relatively high levels in salivary gland trypanosomes, although the proteins are rarely detected by immunofluorescence. Additional experiments using transgenic trypanosomes expressing reporter genes or mutant forms of procyclin point to a mechanism of translational or post-translational control, involving the procyclin coding regions, in salivary gland trypanosomes. It is widely accepted that T. brucei always has a coat of either variant surface glycoprotein or procyclin. It has been known for many years that the epimastigote form does not have a variant surface glycoprotein coat. The finding that this life cycle stage is usually negative for procyclin as well is new, and means that the paradigm will need to be revised.  相似文献   

6.
Morris JC  Wang Z  Drew ME  Englund PT 《The EMBO journal》2002,21(17):4429-4438
RNA interference (RNAi) is a powerful tool for identifying gene function in Trypanosoma brucei. We generated an RNAi library, the first of its kind in any organism, by ligation of genomic fragments into the vector pZJMbeta. After transfection at approximately 5-fold genome coverage, trypanosomes were induced to express double-stranded RNA and screened for reduced con canavalin A (conA) binding. Since this lectin binds the surface glycoprotein EP-procyclin, we predicted that cells would lose affinity to conA if RNAi silenced genes affecting EP-procyclin expression or modification. We found a cell line in which RNAi switches expression from glycosylated EP-procyclins to the unglycosylated GPEET-procyclin. This switch results from silencing a hexokinase gene. The relationship between procyclin expression and glycolysis was supported by silencing other genes in the glycolytic pathway, and confirmed by observation of a similar upregulation of GPEET- procyclin when parental cells were grown in medium depleted of glucose. These data suggest that T.brucei 'senses' changes in glucose level and modulates procyclin expression accordingly.  相似文献   

7.
Incubation of African trypanosomes with the lectin concanavalin A (conA) leads to alteration in cellular DNA content, DNA degradation, and surface membrane blebbing. Here, we report the generation and characterization of a conA-refractory Trypanosoma brucei line. These insect stage parasites were resistant to conA killing, with a median lethal dose at least 50-fold greater than the parental line. Fluorescence-based experiments revealed that the resistant cells bound less lectin when compared to the parental line. Western blotting and mass spectrometry confirmed that the resistant line lacked an N-glycan required for conA binding on the cellular receptors, EP procyclin proteins. The failure to N-glycosylate the EP procyclins was not the consequence of altered N-glycan precursor biosynthesis, as another glycosylated protein (Fla1p) was normally modified. These findings support the likelihood that resistance to conA was a consequence of failure to bind the lectin trigger.  相似文献   

8.
Transmission of Trypanosoma brucei by the tsetse fly entails several rounds of differentiation as the parasite migrates through the digestive tract to the salivary glands of its vector. Differentiation of the bloodstream to the procyclic form in the fly midgut is accompanied by the synthesis of a new coat consisting of EP and GPEET procyclins. There are three closely related EP isoforms, two of which (EP1 and EP3) contain N-glycans. To identify the individual EP isoforms that are expressed early during synchronous differentiation in vitro, we exploited the selective extraction of GPI-anchored proteins and mass spectrometry. Unexpectedly, we found that GPEET and all isoforms of EP were coexpressed for a few hours at the onset of differentiation. At this time, the majority of EP1 and EP3 molecules were already glycosylated. Within 24 hours, GPEET became the major surface component, to be replaced in turn by glycosylated forms of EP, principally EP1, at a later phase of development. Transient transfection experiments using reporter genes revealed that each procyclin 3' untranslated region contributes to differential expression as the procyclic form develops. We postulate that programmed expression of other procyclin species will accompany further rounds of differentiation, enabling the parasite to progress through the fly.  相似文献   

9.
In the mammalian host, the unicellular flagellate Trypanosoma brucei is covered by a dense surface coat that consists of a single species of macromolecule, the membrane form of the variant surface glycoprotein (mfVSG). After uptake by the insect vector, the tsetse fly, bloodstream-form trypanosomes differentiate to procyclic forms in the fly midgut. Differentiation is characterized by the loss of the mfVSG coat and the acquisition of a new surface glycoprotein, procyclin. In this study, the change in surface glycoprotein composition during differentiation was investigated in vitro. After triggering differentiation, a rapid increase in procyclin-specific mRNA was observed. In contrast, there was a lag of several hours before procyclin could be detected. Procyclin was incorporated and uniformly distributed in the surface coat. The VSG coat was subsequently shed. For a single cell, it took 12-16 h to express a maximum level of procyclin at the surface while the loss of the VSG coat required approximately 4 h. The data are discussed in terms of the possible molecular arrangement of mfVSG and procyclin at the cell surface. Molecular modeling data suggest that a (Asp-Pro)2 (Glu-Pro)22-29 repeat in procyclin assumes a cylindrical shape 14-18 nm in length and 0.9 nm in diameter. This extended shape would enable procyclin to interdigitate between the mfVSG molecules during differentiation, exposing epitopes beyond the 12-15-nm-thick VSG coat.  相似文献   

10.
African trypanosomes are not passively transmitted, but they undergo several rounds of differentiation and proliferation within their intermediate host, the tsetse fly. At each stage, the survival and successful replication of the parasites improve their chances of continuing the life cycle, but little is known about specific molecules that contribute to these processes. Procyclins are the major surface glycoproteins of the insect forms of Trypanosoma brucei. Six genes encode proteins with extensive glutamic acid–proline dipeptide repeats (EP in the single-letter amino acid code), and two genes encode proteins with an internal pentapeptide repeat (GPEET). To study the function of procyclins, we have generated mutants that have no EP genes and only one copy of GPEET. This last gene could not be replaced by EP procyclins, and could only be deleted once a second GPEET copy was introduced into another locus. The EP knockouts are morphologically indistinguishable from the parental strain, but their ability to establish a heavy infection in the insect midgut is severely compromised; this phenotype can be reversed by the reintroduction of a single, highly expressed EP gene. These results suggest that the two types of procyclin have different roles, and that the EP form, while not required in culture, is important for survival in the fly.  相似文献   

11.
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen—designated as early procyclic forms—express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4–7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut.  相似文献   

12.
EP and GPEET procyclin, the major surface glycoproteins of procyclic forms of Trypanosoma brucei, are truncated by proteases in the midgut of the tsetse fly Glossina morsitans morsitans. We show that soluble extracts from the midguts of teneral flies contain trypsin-like enzymes that cleave the N-terminal domains from living culture-derived parasites. The same extract shows little activity against a variant surface glycoprotein on living bloodstream form T. brucei (MITat 1.2) and none against glutamic acid/alanine-rich protein, a major surface glycoprotein of Trypanosoma congolense insect forms although both these proteins contain potential trypsin cleavage sites. Gel filtration of tsetse midgut extract revealed three peaks of tryptic activity against procyclins. Trypsin alone would be sufficient to account for the cleavage of GPEET at a single arginine residue in the fly. In contrast, the processing of EP at multiple sites would require additional enzymes that might only be induced or activated during feeding or infection. Unexpectedly, the pH optima for both the procyclin cleavage reaction and digestion of the trypsin-specific synthetic substrate Chromozym-TRY were extremely alkaline (pH 10). Direct measurements were made of the pH within different compartments of the tsetse digestive tract. We conclude that the gut pH of teneral flies, from the proventriculus to the hindgut, is alkaline, in contradiction to previous measurements indicating that it was mildly acidic. When tsetse flies were analysed 48 h after their first bloodmeal, a pH gradient from the proventriculus (pH 10.6+/-0.6) to the posterior midgut (pH 7.9+/-0.4) was observed.  相似文献   

13.
14.
A Trypanosoma brucei TbGPI12 null mutant that is unable to express cell surface procyclins and free glycosylphosphatidylinositols (GPI) revealed that these are not the only surface coat molecules of the procyclic life cycle stage. Here, we show that non-GPI-anchored procyclins are N-glycosylated, accumulate in the lysosome, and appear as proteolytic fragments in the medium. We also show, using lectin agglutination and galactose oxidase-NaB3H4 labeling, that the cell surface of the TbGPI12 null parasites contains glycoconjugates that terminate in sialic acid linked to galactose. Following desialylation, a high-apparent-molecular-weight glycoconjugate fraction was purified by ricin affinity chromatography and gel filtration and shown to contain mannose, galactose, N-acetylglucosamine, and fucose. The latter has not been previously reported in T. brucei glycoproteins. A proteomic analysis of this fraction revealed a mixture of polytopic transmembrane proteins, including P-type ATPase and vacuolar proton-translocating pyrophosphatase. Immunolocalization studies showed that both could be labeled on the surfaces of wild-type and TbGPI12 null cells. Neither galactose oxidase-NaB3H4 labeling of the non-GPI-anchored surface glycoconjugates nor immunogold labeling of the P-type ATPase was affected by the presence of procyclins in the wild-type cells, suggesting that the procyclins do not, by themselves, form a macromolecular barrier.The tsetse fly-transmitted protozoan parasite Trypanosoma brucei causes human sleeping sickness and the cattle disease Nagana in sub-Saharan Africa. The organism undergoes a complex life cycle between the mammalian host and the insect, tsetse, vector. The bloodstream form of the parasite expresses a dense monolayer of glycosylphosphatidylinositol (GPI)- anchored variant surface glycoprotein dimers and avoids specific immune responses through antigenic variation (32, 47). Following ingestion in a blood meal, the parasites differentiate into procyclic-form parasites that colonize the tsetse midgut. The procyclic trypanosomes express a radically different cell surface coat that includes about 3 × 106 procyclin glycoproteins (28, 36, 37) and about 1 × 106 poly-N-acetyllactosamine-containing free GPIs (19, 29, 39, 55). The procyclins are polyanionic, rod-like (38, 50) proteins encoded by procyclin genes. In T. brucei strain 427, used in this study, the parasites contain (per diploid genome) two copies of the GPEET1 gene, encoding 6 Gly-Pro-Glu-Glu-Thr repeats; one copy each of the EP1-1 and EP1-2 genes, encoding EP1 procyclins with 30 and 25 Glu-Pro repeats, respectively; two copies of the EP2-1 gene, encoding EP2 procyclin with 25 Glu-Pro repeats; and two copies of the EP3-1 gene, encoding EP3 procyclin with 22 Glu-Pro repeats (1). The EP1 and EP3 procyclins contain a single N-glycosylation site, occupied exclusively by a conventional Man5GlcNAc2 oligosaccharide, at the N-terminal side of the Glu-Pro repeat domain (1, 50). Whereas neither EP2 nor GPEET procyclin is N-glycosylated, GPEET1 procyclin is phosphorylated on six out of seven Thr residues (25). In culture, the procyclin expression profile depends on the carbon source (56) and metabolic state of the cells (27), and in the tsetse fly, there appears to be a program of procyclin expression such that GPEET procyclin is expressed early, giving way to EP1 and EP3 procyclin expression (2, 54). GPEET and EP procyclins contain similar GPI membrane anchors. These are based on the ubiquitous ethanolamine-P-6Manα1-2Manα1-6Manα1-4GlcNα1-6PI core (where, in this case, the PI lipid is a 2-O-acyl-myo-inositol-1-P-sn-2-lyso-1-O-acylglycerol structure [50]), but they also contain the largest and most complex known GPI side chains. These side chains are large poly-disperse-branched poly-N-acetyllactosamine structures (with an average of about 8 to 12 repeats, depending on the preparation) that can terminate with α2- and α3-linked sialic acid residues (9, 50). Sialic acid is transferred from serum sialoglycoconjugates to terminal β-galactosidase residues by the action of a cell surface GPI-anchored trans-sialidase enzyme (7, 26, 34). The trans-sialylation of surface components plays a role in the successful colonization of the tsetse fly (29). In vivo, the N termini of the procyclins are removed by tsetse fly gut proteases (2), though the role of this event is unclear (20) and it is thought that the underlying (protease-resistant) anionic repeat units and associated GPI anchor side chains might protect the parasite from the approach of tsetse fly gut hydrolases (2).The cell surface architecture of procyclic trypanosomes has been manipulated by the gene knockout of the procyclin genes themselves (55, 57), by galactose starvation (39), and by the knockout or knockdown of genes encoding enzymes of the GPI biosynthetic pathway, i.e., TbGPI10, TbGPI8, and TbGPI12 (11, 19, 29, 30). The procyclin TbGPI10 and TbGPI8 knockouts all resulted in parasites devoid of GPI-anchored procyclins, but this was compensated for by an upregulation in free GPI expression. However, the TbGPI12 null mutants that cannot synthesize GPI structures beyond GlcNAc-PI, revealed the presence of previously unidentified non-GPI-anchored surface coat components. In this paper, we characterize the fate of non-GPI-anchored procyclin protein and characterize the non-GPI-anchored surface coat components.  相似文献   

15.
In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.  相似文献   

16.
The differentiation of mammalian stage Trypanosoma brucei bloodstream forms comprising predominantly parasites of intermediate and stumpy morphology to the procyclic forms characteristic for the insect midgut stage was studied in vitro. Differentiation of the cell population occurred synchronously as judged by the synthesis of the surface glycoprotein, procyclin, characteristic of the arising procyclic forms and the loss of the membrane-form variant surface glycoprotein, the coat protein of bloodstream forms. The change in surface antigens took place within 12 h in the absence of cell growth; subsequently, the procyclic cells divided exponentially. As defined in this study, T. brucei may be a useful model to follow other changes in gene expression, metabolism or ultrastructure during differentiation of a unicellular eucaryote.  相似文献   

17.
The major surface antigen of the mammalian bloodstream form of Trypanosoma brucei, the variant surface glycoprotein (VSG), is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. The VSG anchor is susceptible to phosphatidylinositol-specific phospholipase C (PI-PLC). Candidate precursor glycolipids, P2 and P3, which are PI-PLC-sensitive and -resistant respectively, have been characterized in the bloodstream stage. In the insect midgut stage, the major surface glycoprotein, procyclic acidic repetitive glycoprotein, is also GPI-anchored but is resistant to PI-PLC. To determine how the structure of the GPI anchor is altered at different life stages, we characterized candidate GPI molecules in procyclic T. brucei. The structure of a major procyclic GPI, PP1, is ethanolamine-PO4-Man alpha 1-2Man alpha 1-6 Man alpha 1-GlcN-acylinositol, linked to lysophosphatidic acid. The inositol can be labeled with [3H]palmitic acid, and the glyceride with [3H]stearic acid. We have also found that all detectable ethanolamine-containing GPIs from procyclic cells contain acylinositol and are resistant to cleavage by PI-PLC. This suggests that the procyclic acidic repetitive glycoprotein GPI anchor structure differs from that of the VSG by virtue of the structures of the GPIs available for transfer.  相似文献   

18.
Galactose metabolism is essential in bloodstream form Trypanosoma brucei and is initiated by the enzyme UDP-Glc 4'-epimerase. Here, we show that the parasite epimerase is a homodimer that can interconvert UDP-Glc and UDP-Gal but not UDP-GlcNAc and UDP-GalNAc. The epimerase was localized to the glycosomes by immunofluorescence microscopy and subcellular fractionation, suggesting a novel compartmentalization of galactose metabolism in this organism. The epimerase is encoded by the TbGALE gene and procyclic form T. brucei single-allele knockouts, and conditional (tetracycline-inducible) null mutants were constructed. Under non-permissive conditions, conditional null mutant cultures ceased growth after 8 days and resumed growth after 15 days. The resumption of growth coincided with constitutive re-expression epimerase mRNA. These data show that galactose metabolism is essential for cell growth in procyclic form T. brucei. The epimerase is required for glycoprotein galactosylation. The major procyclic form glycoproteins, the procyclins., were analyzed in TbGALE single-allele knockouts and in the conditional null mutant after removal of tetracycline. The procyclins contain glycosylphosphatidylinositol membrane anchors with large poly-N-acetyl-lactosamine side chains. The single allele knockouts exhibited 30% reduction in procyclin galactose content. This example of haploid insufficiency suggests that epimerase levels are close to limiting in this life cycle stage. Similar analyses of the conditional null mutant 9 days after the removal of tetracycline showed that the procyclins were virtually galactose-free and greatly reduced in size. The parasites compensated, ultimately unsuccessfully, by expressing 10-fold more procyclin. The implications of these data with respect to the relative roles of procyclin polypeptide and carbohydrate are discussed.  相似文献   

19.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号