首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Adipophilin是细胞内脂质聚集和与脂质聚集有关疾病的标志物,巨噬细胞源性泡沫细胞的形成是动脉粥样硬化性疾病发生的重要环节.为了探讨adipophilin在动脉粥样硬化性疾病的作用,通过高胆固醇饲料喂养新西兰白兔12周,复制动脉粥样硬化疾病模型,同时测定血脂的变化和动脉壁胆固醇,使用HE染色、苏丹Ⅳ染色观察动脉粥样硬化病变的形成,使用免疫组织化学的方法观察动脉粥样硬化病变处和动物肝脏中adipophilin的表达.结果发现,高胆固醇饲料喂养组血清总胆固醇、低密度脂蛋白胆固醇和动脉壁胆固醇明显增高,动脉粥样硬化病变面积增加到(40.06±7.29)%,动脉粥样硬化病变处adipophilin表达呈阳性;而adipophilin在肝脏中的表达无论是高胆固醇饲料喂养组或对照组均为阴性.使用80 mg/L OxLDL与小鼠腹膜巨噬细胞共孵育,复制脂质负荷细胞,然后把构建的1 mmol/L adipophilin反义寡核苷酸与该细胞共孵育.结果发现,使用油红O染色观察的细胞内脂滴明显减少,生化测定细胞内胆固醇酯显著降低,与对照组相比,差别有显著性.说明adipophilin与动脉粥样硬化病变有密切的关系,控制adipophilin的表达能够减少巨噬细胞细胞内胆固醇酯的聚集.  相似文献   

2.
Adipophilin是细胞内脂质聚集和与脂质聚集有关疾病的标志物 ,巨噬细胞源性泡沫细胞的形成是动脉粥样硬化性疾病发生的重要环节 .为了探讨adipophilin在动脉粥样硬化性疾病的作用 ,通过高胆固醇饲料喂养新西兰白兔 12周 ,复制动脉粥样硬化疾病模型 ,同时测定血脂的变化和动脉壁胆固醇 ,使用HE染色、苏丹Ⅳ染色观察动脉粥样硬化病变的形成 ,使用免疫组织化学的方法观察动脉粥样硬化病变处和动物肝脏中adipophilin的表达 .结果发现 ,高胆固醇饲料喂养组血清总胆固醇、低密度脂蛋白胆固醇和动脉壁胆固醇明显增高 ,动脉粥样硬化病变面积增加到 (40 0 6± 7 2 9) % ,动脉粥样硬化病变处adipophilin表达呈阳性 ;而adipophilin在肝脏中的表达无论是高胆固醇饲料喂养组或对照组均为阴性 .使用80mg/L OxLDL与小鼠腹膜巨噬细胞共孵育 ,复制脂质负荷细胞 ,然后把构建的 1mmol/Ladipophilin反义寡核苷酸与该细胞共孵育 .结果发现 ,使用油红O染色观察的细胞内脂滴明显减少 ,生化测定细胞内胆固醇酯显著降低 ,与对照组相比 ,差别有显著性 .说明adipophilin与动脉粥样硬化病变有密切的关系 ,控制adipophilin的表达能够减少巨噬细胞细胞内胆固醇酯的聚集  相似文献   

3.
Qin L  Qin XP  Wang Z  Zhu BY  Liao DF 《生理学报》2006,58(1):47-52
本文旨在观察普伐他汀对鼠源巨噬细胞性泡沫细胞内胆固醇酯含量的影响,探讨此作用与小凹蛋白一l的关系。采用体外培养的鼠源性巨噬细胞株作为研究对象,加入氧化低密度脂蛋白(oxidized low density lipoprotein,OX-LDL)使其形成泡沫细胞,运用高效液相色谱测定细胞内胆固醇酯的改变,同时运用Western blot检测细胞中小凹蛋白-1的表达,并观察普伐他汀对细胞内胆固醇酯和小凹蛋白-1影响的量效和时效关系。结果显示:普伐他汀可明显降低泡沫细胞内的胆固醇酯与总胆固醇的比值,且在一定范围内呈剂量依赖性和时间依赖性。在泡沫细胞中加入普伐他汀后能够促进小凹蛋白-1的表达,呈剂量依赖性和时间依赖性。上述结果提示普伐他汀通过降低细胞内胆固醇酯的含量,减轻细胞泡沫化程度。普伐他汀的这一作用可能与促进小凹蛋白-1表达上调有关。  相似文献   

4.
本文采用靛蓝胭脂红褪色反应检测抗体是否能催化经佛波酯(PMA)激活的THP-1单核细胞产生臭氧(O_3),并借助荧光分光光度法检测细胞内胆固醇的积聚,以及高效液相色谱法(HPLC)分析细胞内胆固醇的臭氧氧化产物5,6-secosterol生成的情况,探讨抗体催化水的氧化作用对动脉粥样病变形成潜在的影响。结果显示,THP-1单核细胞经人IgG、PMA共同孵育后,显著产生了O_3的化学信号,对靛蓝胭脂红具有明显的褪色作用,过氧化氢酶能加强这种褪色反应,而乙烯苯甲酸具有显著的抑制作用;THP-1单核细胞经人IgG、PMA及低密度脂蛋白(LDL)共同孵育后,其细胞内积聚的总胆固醇(TC)、游离胆固醇(FC)、胆固醇酯(CE)及胆固醇酯占总胆固醇的比值均明显增多,并显著产生了胆固醇的臭氧氧化产物5,6-secosterol,乙烯苯甲酸对它们均有抑制效应。以上结果表明:激活的THP-1单核细胞在抗体的催化下具有产生臭氧的能力,可能是动脉粥样硬化形成过程中一种新的重要机制。  相似文献   

5.
NADPH氧化酶活性不影响主动脉平滑肌细胞负荷胆固醇   总被引:1,自引:0,他引:1  
NADPH氧化酶产生的活性氧促进血管平滑肌细胞的增殖和迁移,与动脉粥样硬化的发生密切相关.为了观察NADPH氧化酶的亚基p47phox对血管平滑肌细胞胆固醇代谢的影响,把p47phox基因敲除小鼠的主动脉血管平滑肌细胞与10 mg/L水溶性胆固醇共孵育72 h,然后用0.3 mg/L凝血酶处理10 min,采用免疫组织化学和油红O染色、实时定量逆转录PCR、免疫蛋白印迹、细胞内胆固醇测定等方法,观察细胞内胆固醇的改变,与平滑肌细胞、巨噬细胞、炎症反应细胞内胆固醇代谢相关蛋白的表达.结果显示,与未孵育的对照组相比,水溶性胆固醇孵育过的主动脉血管平滑肌细胞内胆固醇明显增加,差别有显著性意义:细胞内中性脂滴明显增加;α-肌动蛋白的表达下降,半乳糖凝集素3表达升高,单核细胞趋化蛋白1及血管细胞黏附分子1的表达不变;ATP结合盒转运体A1、酰基辅酶A:胆固醇酰基转移酶1及脂肪分化相关蛋白的表达增加.但是,与野生型血管平滑肌细胞相比,敲除p47phox基因并不能使所测定的指标发生变化.结果提示,负荷胆固醇后,p47phox依赖的NADPH氧化酶并不能改变血管平滑肌细胞向泡沫细胞的转变.单纯敲除p47phox基因不能改变细胞内胆固醇代谢的状态.  相似文献   

6.
以THP-1巨噬细胞源性泡沫细胞为研究对象,观察干扰素-γ(IFN-γ)对THP-1巨噬细胞源性泡沫细胞胆固醇流出和三磷酸腺苷结合盒转运体A1(ABCA1)表达的影响.以便探讨IFN-γ在动脉粥样硬化发生发展中的作用.采用液体闪烁计数器检测细胞内胆固醇流出, 高效液相色谱分析细胞内总胆固醇、游离胆固醇和胆固醇酯含量.运用逆转录-多聚酶链反应和蛋白质印迹分别检测ABCA1 mRNA与ABCA1蛋白质的表达, 采用流式细胞术检测细胞平均ABCA1荧光强度.发现IFN-γ引起THP-1巨噬细胞源性泡沫细胞总胆固醇、游离胆固醇与胆固醇酯呈时间依赖性增加, 而ABCA1 mRNA和蛋白质表达、细胞平均ABCA1荧光强度以及apoA-1介导的胆固醇流出呈时间依赖性减少, 细胞内胆固醇增多.结果表明IFN-γ抑制THP-1巨噬细胞源性泡沫细胞ABCA1表达及细胞内胆固醇流出,同时增加细胞内胆固醇聚积.  相似文献   

7.
载脂蛋白A-Ⅰ通过PKA信号途径影响ABCA1的表达与功能   总被引:2,自引:0,他引:2  
以THP-1巨噬细胞源性泡沫细胞为研究对象,观察载脂蛋白A-Ⅰ与三磷酸腺苷结合盒转运体A1(ATP binding cassette transporter A1,ABCA1)的相互作用,并探讨它们相互作用的机制,以便了解载脂蛋白A-Ⅰ和ABCA1在动脉粥样硬化发生发展中的作用.THP-1巨噬细胞源性泡沫细胞经各种因素处理后,采用油红“O”染色,观察细胞内的脂滴,运用液体闪烁计数器检测细胞内胆固醇流出,高效液相色谱分析细胞内总胆固醇、游离胆固醇和胆固醇酯含量,用逆转录-聚合酶链反应和蛋白质印迹分析法分别检测ABCA1 mRNA与ABCA1蛋白质的水平.实验结果显示,载脂蛋白A-Ⅰ和腺苷酸环化酶激动剂Forskolin(FRK)引起THP-1巨噬细胞源性泡沫细胞总胆固醇、游离胆固醇与胆固醇酯减少,而腺苷酸环化酶抑制剂SQ-22536引起THP-1巨噬细胞源性泡沫细胞总胆固醇、游离胆固醇与胆固醇酯增加.载脂蛋白A-Ⅰ引起THP-1巨噬细胞源性泡沫细胞ABCA1蛋白质水平和细胞内胆固醇流出增加.FRK引起THP-1巨噬细胞源性泡沫细胞ABCA1蛋白质水平和细胞内胆固醇流出呈时间和浓度依赖性增加.SQ-22536引起THP-1巨噬细胞源性泡沫细胞ABCA1蛋白质水平和细胞内胆固醇流出减少.结果提示,载脂蛋白A-Ⅰ可提高THP-1巨噬细胞源性泡沫细胞ABCA1蛋白质水平,增加细胞内胆固醇流出,降低细胞内胆固醇聚积.其机制可能是通过PKA信号途经使细胞ABCA1蛋白质水平增加.  相似文献   

8.
为探讨Daxx对氧化型低密度脂蛋白(oxidized low-density lipoprotein,Ox-LDL)诱导巨噬细胞胆固醇蓄积和凋亡的介导作用及其可能的分子机制,用高效液相色谱法检测细胞内胆固醇含量,油红O染色观察细胞内脂滴的形成情况,流式细胞术和吖啶橙/溴化乙锭(AO/EB)染色法研究Ox-LDL对细胞凋亡的影响,Real time RT-PCR检测细胞内Daxx mRNA的表达水平,Western blot检测caveolin-1蛋白的表达,用特异性siRNA沉默Daxx在RAW264.7 细胞中的表达.Ox-LDL上调Daxx mRNA和caveolin-1的表达、增加细胞内胆固醇含量、促使RAW264.7细胞凋亡,用特异性siRNA干扰Daxx在RAW264.7细胞中的表达能降低caveolin-1的表达、减少细胞内胆固醇含量、以及抑制细胞凋亡.上述结果表明,Daxx对Ox-LDL诱导RAW264.7巨噬细胞胆固醇蓄积和凋亡具有介导作用,这一作用可能与Daxx上调caveolin -1的表达有关.  相似文献   

9.
以草鱼(Ctenopharyngodon idella)为试验对象, 灌喂氧化鱼油7d后, 采集肠道黏膜组织并提取总RNA, 采用RNA-seq方法, 进行氧化鱼油组和正常鱼油组草鱼肠道黏膜基因差异表达水平、基因注释和IPA基因通路分析, 并测定了血清中胆固醇、甘油三酯、高密度脂蛋白和低密度脂蛋白含量. 研究结果显示, 草鱼肠道黏膜在受到氧化鱼油损伤后, 胆固醇和胆汁酸生物合成通路代谢酶、调节胆固醇和胆汁酸合成或转运的代谢酶或蛋白基因差异表达, 部分基因差异表达达到显著性上调水平. 实验结果表明, 草鱼肠道黏膜具备完整的乙酰辅酶A胆固醇胆汁酸的合成代谢基因通路. 肠道黏膜在受到氧化鱼油损伤后, 以乙酰辅酶A为原料的胆固醇生物合成代谢通路基因表达增强, 胆固醇由细胞外转运到细胞内的逆转运途径基因通路表达下调, 胆固醇由细胞内向细胞外转运基因通路表达上调; 以胆固醇为原料的胆汁酸经典合成代谢途径基因通路表达上调, 而胆汁酸的补充合成途径基因表达下调. 在灌喂氧化鱼油后, 血清胆固醇、低密度脂蛋白、甘油三酯含量分别增加了28.84%、29.56%和12.13%, 而高密度脂蛋白含量下降了8.15%.    相似文献   

10.
为探讨肝X受体α(LXRα)-三磷酸腺苷结合盒转运体A1(ABCA1)途径在肺炎衣原体(C.pneumoniae)促巨噬细胞脂质蓄积中的作用和机制,以THP-1巨噬细胞源性泡沫细胞为模型,采用高效液相色谱分析细胞内总胆固醇、游离胆固醇和胆固醇酯含量,液体闪烁计数器检测细胞内胆固醇流出,RT-PCR检测ABCA1和LXRαm RNA的表达,蛋白质印迹检测ABCA1和LXRα的蛋白质表达;使用LXRα的特异性激动剂T0901317对细胞进行预处理,再观察上述指标的变化.结果显示,C.pneumoniae可促进THP-1巨噬细胞源性泡沫细胞内总胆固醇、游离胆固醇和胆固醇酯含量增加,抑制胆固醇外流,降低细胞ABCA1和LXRα的表达;使用ABCA1激动剂8-溴-环磷酸腺苷预处理细胞或LXR激动剂T0901317预处理细胞后,可明显减弱C.pneumoniae对THP-1细胞ABCA1的表达抑制,促进细胞胆固醇流出,降低细胞内胆固醇的含量.结果提示,C.pneumoniae促进巨噬细胞脂质蓄积及胆固醇流出障碍,其机制可能与LXRα-ABCA1途径有关.  相似文献   

11.
Oxidatively modified low density lipoproteins (Ox-LDL) may be involved in determining the formation of foam cells by inducing cellular cholesteryl ester accumulation. We studied the effect of copper oxidized LDL (Ox-LDL) on cholesterol accumulation and esterification in murine macrophages. Ox-LDL (44 micrograms/ml of lipoprotein cholesterol) increased the total cholesterol content of the cells from 29 to 69 micrograms/mg cell protein. Free cholesterol accounted for 85% of this increase. Acetyl LDL (Ac-LDL) (38 micrograms/ml of lipoprotein cholesterol), raised total cellular cholesterol content to a similar extent (76 micrograms/mg cell protein), however only 25% of the accumulated cholesterol was unesterified. When ACAT activity was determined after incubation of J774 cell with Ox- or Ac-LDL, Ox-LDL were 12 times less effective than Ac-LDL in stimulating cholesteryl ester formation. This was not due to an inhibition of ACAT by Ox-LDL since these lipoproteins failed to inhibit pre activated enzyme in cholesteryl ester-loaded macrophages. The uptake of 125I-Ox-LDL: was 175% that of 125I-Ac-LDL, while degradation was only 20%. All together these data suggest an altered intracellular processing of Ox-LDL, which may be responsible for free cholesterol accumulation.  相似文献   

12.
The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification by 34%, demonstrating a dissociation between the degradation of Ox-LDL and its ability to stimulate cholesterol esterification. Further, while LDL and Ac-LDL resulted in a 5- and 15-fold increase in cholesteryl ester accumulation, respectively, Ox-LDL caused only a 1.3-fold increase in cholesteryl ester mass. These differences could be accounted for, in part, by the reduced cholesteryl ester content of Ox-LDL. However, when endothelial cells were incubated with Ac-LDL in the presence and absence of Ox-LDL, Ox-LDL led to a dose-dependent inhibition of cholesterol esterification without affecting the degradation of Ac-LDL. This inhibitory effect of Ox-LDL on cholesteryl ester synthesis was also manifest in normal human skin fibroblasts incubated with LDL and in LDL-receptor-negative fibroblasts incubated with unesterified cholesterol to stimulate cholesterol esterification. Further, the lipid extract from Ox-LDL inhibited cholesterol esterification in LDL-receptor negative fibroblasts. These findings suggest that the inhibition of cholesterol esterification by oxidized LDL is independent of the LDL and scavenger receptors and may be a result of translocation of a lipid component of oxidatively modified LDL across the cell membrane.  相似文献   

13.
We describe herein the effects of Marek's disease herpesvirus (MDV) on cholesterol and cholesteryl ester metabolism in cultured chicken arterial smooth muscle cells. Infection of arterial smooth muscle cells from specific pathogen-free chickens with MDV, but not a virus control, herpesvirus of turkeys led to a 7-10-fold increase in the accumulation of free and esterified cholesterol and a 2-fold increase in phospholipids. The cellular lipid changes observed in the MDV-infected arterial smooth muscle cells resulted, in part, from the following: decreased low-density lipoprotein-cholesteryl ester hydrolysis due to decreased lysosomal (acid) cholesteryl ester hydrolytic activity; increased de novo synthesis of cholesterol; decreased excretion of free cholesterol; and, both increased cholesteryl ester synthetic activity and decreased cytoplasmic (neutral) cholesteryl ester hydrolytic activity which resulted in increased incorporation of oleic acid into cholesteryl ester. Other changes noted in the MDV-infected cells as compared to uninfected cells included a 2-fold increase in both total protein synthesis and lysosomal and microsomal marker enzyme activities. These alterations in lipid and protein metabolism in MDV-infected arterial smooth muscle cells may explain in part our in vivo findings that herpesvirus (MDV) infection of specific pathogen-free chickens fed a normocholesterolemic diet will induce arterial thickening and lipid accumulation resembling human atherosclerosis.  相似文献   

14.
We present results from studies of human cell culture models to support the premise that the extracellular transport of lysosomal acid lipase has a function in lipoprotein cholesteryl ester metabolism in vascular tissue. Vascular endothelial cells secreted a higher fraction of cellular acid lipase than did smooth muscle cells and fibroblasts. Acid lipase and lysosomal beta-hexosaminidase were secreted at approximately the same rate from the apical and basolateral surface of an endothelial cell monolayer. Stimulation of secretion with NH4Cl did not affect the polarity. We tested for the ability of secreted endothelial lipase to interact with connective tissue cells and influence lipoprotein cholesterol metabolism in a coculture system in which endothelial cells on a micropore filter were suspended above a monolayer of acid lipase-deficient (Wolman disease) fibroblasts. After 5-7 d, acid lipase activity in the fibroblasts reached 10%-20% of the level in normal cells; cholesteryl esters that had accumulated from growth in serum were cleared. Addition of mannose 6-phosphate to the coculture medium blocked acid lipase uptake and cholesterol clearance, indicating that lipase released from endothelial cells was packaged into fibroblast lysosomes by a phosphomannosyl receptor-mediated pathway. Supplementation of the coculture medium with serum was not required for lipase uptake and cholesteryl ester hydrolysis by the fibroblasts, but was necessary for cholesterol clearance. Results from our coculture model suggest that acid lipase may be transported from intact endothelium to cells in the lumen or the wall of a blood vessel. We postulate that delivery of acid hydrolases and lipoproteins to a common endocytic compartment may occur and have an impact on cellular lipoprotein processing.  相似文献   

15.
The hydrolysis of cholesteryl esters contained in plasma low density lipoprotein was reduced in cultured fibroblasts derived from a patient with cholesteryl ester storage disease, an inborn error of metabolism in which lysosomal acid lipase activity is deficient. While these mutant cells showed a normal ability to bind low density lipoprotein at its high affinity cell surface receptor site, to take up the bound lipoprotein through endocytosis, and to hydrolyze the protein component of the lipoprotein in lysosomes, their defective lysosomal hydrolysis of the cholesteryl ester component of the lipoprotein led to the accumulation within the cell of unhydrolyzed cholesteryl esters, the fatty acid distribution of which resembled that of plasma lipoprotein. When the cholesteryl ester storage disease cells were incubated with low density lipoprotein, the reduced rate of liberation of free cholesterol by these mutant cells was associated with a delay in the occurrence of two lipoprotein-mediated regulatory events, suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and activation of endogenous cholesteryl ester formation. In contrast to their defective hydrolysis of exogenously derived lipoprotein-bound cholesteryl esters, the choleseryl ester storage disease cells showed a normal rate of hydrolysis of cholesteryl esters that had been synthesized within the cell. These data lend support to the concept that in cultured human fibroblasts cholesteryl esters entering the cell bound to low density lipoprotein are hydrolyzed within the lysosome and that one of the functions of this intracellular organelle is to supply the cell with free cholesterol.  相似文献   

16.
The fatty-acid specificity of the lysosomal cholesterol esterase was examined in cultured human arterial smooth muscle cells. The lysosomal compartment of cultured cells was enriched with cholesteryl esters by incubation of cells with 0.2 mg/ml low-density lipoprotein and 50 microM chloroquine for 24 h. The hydrolysis of cholesteryl esters was subsequently induced by incubating cells in a medium containing 5% lipoprotein-deficient serum without chloroquine. Cellular cholesteryl ester mass was markedly reduced after 23 h in the lipoprotein-deficient serum. Fatty-acid analysis of cholesteryl esters in cells before and after the 23 h incubation with lipoprotein-deficient serum revealed that polyunsaturated cholesteryl esters (linoleate and arachidonate) were preferentially hydrolyzed compared to cholesteryl oleate or saturated cholesteryl esters. An increase in the ratio of cholesteryl oleate to cholesteryl linoleate was observed even when the cellular activity of acyl-CoA:cholesterol acyltransferase was inhibited with Sandoz Compound 58-035. We conclude that, in human arterial smooth muscle cells, the lysosomal acid cholesterol esterase preferentially hydrolyzes polyunsaturated cholesteryl esters.  相似文献   

17.
Rat hepatoma cells (Fu5AH) were studied as a model for the net delivery of apoE-free high-density lipoprotein (HDL) cholesterol to a cell. Incubating cells with HDL results in 1) a decrease in both media-free cholesterol and cholesteryl ester concentration; 2) decreased cell sterol synthesis; and 3) increased cell cholesteryl ester synthesis. HDL cholesteryl ester uptake is increased when cells are incubated for 18 hr in cholesterol poor media. Coincubation of 3H-cholesteryl ester-labeled low-density lipoprotein (LDL) with 50 microM chloroquine or 25 microM monensin results in a decrease in the cellular free cholesterol/cholesteryl ester (FC/CE) isotope ratio, indicating an inhibition in the conversion of cholesteryl ester to free cholesterol. In contrast, chloroquine and monensin do not alter the cellular FC/CE isotope ratio for 3H-CE HDL. This evidence indicates that acidic lysosomal cholesteryl ester hydrolase does not account for the hydrolysis of HDL-CE. Free cholesterol generated from 3H-cholesteryl ester of both LDL and HDL is reesterified intracellularly. At higher HDL concentrations (above 50 micrograms/ml) HDL cholesteryl ester hydrolysis is sensitive to chloroquine. We propose that an extralysosomal pathway is operating in the metabolism of HDL cholesterol and that at higher HDL concentrations a lysosomal pathway may be functioning in addition to an extralysosomal pathway.  相似文献   

18.
The transformation of macrophages and smooth muscle cells into foam cells by modified low-density lipoproteins (LDL) is one of the key events of atherogenesis. Effects of free radicals have mainly been studied in LDL, and other than toxicity, data dealing with direct action of free radicals on cells are scarce. This study focused on the direct effects of free radicals on cholesterol metabolism of smooth muscle cells. A free radical generator, azobis-amidinopropane dihydrochloride, was used, and conditions for a standardized oxidative stress were set up in vascular smooth muscle cells. After free radical action, the cells presented an accumulation of cholesterol that appeared to be the result of: (i) an increase in cholesterol biosynthesis and esterification; (ii) a decrease in cell cholesteryl ester hydrolysis; and (iii) a reduced cholesterol efflux. All these parameters were opposed by antioxidants. In addition, oxidant stress induced an increased degradation of acetyl-LDL, whereas no change was noted for native LDL. From this data, it was concluded that cholesterol metabolism of vascular smooth muscle cells was markedly altered by in vitro treatment with free radicals, although cell viability was unaffected. The resulting disturbance in cholesterol metabolism favors accumulation of cholesterol and cholesteryl esters in vascular cells, and thus may contribute to the formation of smooth muscle foam cells.  相似文献   

19.
Effects of two Ca-antagonists, verapamil and nifedipine, on the total cellular cholesterol content and accumulation, as well as on the synthesis and hydrolysis of cholesteryl esters in human aortic intimal smooth muscle cells and P388D1 cell line have been studied. Verapamil and nifedipine used at 10(-6) M and higher concentrations decreased the total cellular cholesterol content (by 25-40%) in intimal cells isolated from atherosclerotic lesions without any effect on the cholesterol content in normal intimal cells or P388D1 cells. At 2 x 10(-5) M verapamil and nifedipine prevented the accumulation of cholesterol induced by atherogenic blood serum or atherogenic low density lipoproteins in both types of cells. At 10(-5) M and higher concentrations verapamil and nifedipine inhibited (2-3-fold) cholesteryl ester synthesis in intimal cells and, used at 10(-6) M and higher doses, in P388D1 cells as well. Verapamil and nifedipine (2 x 10(-5) M) enhanced the hydrolysis of cholesteryl esters in both types of cells. The Ca-channel agonist Bay K8644 had no effect on cholesteryl ester synthesis, nor did it suppress its inhibition by Ca-antagonist. The beta-receptor blocker propranolol induced the accumulation of cholesterol in intimal cells and inhibited the synthesis and hydrolysis of cholesterol esters in these cells. The data obtained suggest that the antiatherosclerotic action of Ca-blockers is determined by their ability to reduce the cellular cholesterol content which is suggested to be the result of enhanced hydrolysis of cellular cholesteryl esters.  相似文献   

20.
Summary It has been proposed that low density lipoprotein (LDL) must undergo oxidative modification before it can participate in atherosclerosis. The present paper studied the effect of cholesterol oxidation in LDL on cultured vascular smooth muscle cells. LDL was oxidized by cholesterol oxidase (3--hydroxy-steroid oxidase) which catalyzes the oxidation of cholesterol to 4-cholesten-3 one and other oxidized cholesterol derivatives. Cholesterol oxidase treatment of LDL did not result in lipid peroxidation. Cultured rabbit aortic smooth muscle cells were morphologically changed following exposure to cholesterol oxidized LDL. Nile red, a hydrophobic probe which can selectively stain intracellular lipid droplets, was applied to detect the cellular lipid content after treatment with oxidized or non-oxidized LDL cholesterol. LDL which did not undergo oxidation of its cholesterol had no effect on the cells. However, cellular nile red fluorescence intensity was increased as the pre-incubation time of cholesterol oxidase with LDL increased. This was supported by HPLC analysis which revealed that the oxidized cholesterol content of treated cells increased. These findings suggest that cholesterol oxidation of LDL can alter lipid deposition in the cells and change cell morphology. The oxidation of cholesterol in vivo may play an important role in the modification of LDL which could contribute to the generation of the lipid-laden foam cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号