首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arctodiaptomus salinus inhabits water bodies across Eurasia and North Africa.Based on our own data and that from the literature,we analyzed the influences of several factors on the intra-and inter-population variability of this species.A strong negative linear correlation between temperature and average body size in the Crimean and African populations was found,in which the parameters might be influenced by salinity.Meanwhile,a significant negative correlation between female body size and the altitude of habitats was found by comparing body size in populations from different regions.Individuals from environments with highly varying abiotic parameters,e.g.temporary reservoirs,had a larger body size than individuals from permanent water bodies.The changes in average body mass in populations were at 11.4 times,whereas,those in individual metabolic activities were at 6.2 times.Moreover,two size groups of A.salinus in the Crimean and the Siberian lakes were observed.The ratio of female length to male length fluctuated between 1.02 and 1.30.The average size of A.salinus in populations and its variations were determined by both genetic and environmental factors.However,the parities of these factors were unequal in either spatial or temporal scales.  相似文献   

2.
赵晨宇  李新畅  崔娟  高宇  史树森 《昆虫学报》1950,63(9):1108-1116
【目的】明确自然变温环境对甘蓝夜蛾Mamestra brassicae生长发育和繁殖的影响,深入研究其对环境温度的适应性。【方法】在13~25℃(日平均19℃), 16~28℃(日平均22℃), 19~31℃(日平均25℃), 22~34℃(日平均28℃)和25~37℃(日平均31℃) 5个梯度变温条件下,以大豆Glycine max植株叶片为寄主材料饲养甘蓝夜蛾卵,测定其各虫态发育历期、发育速率、成虫繁殖力及发育起点温度和有效积温。【结果】变温范围为13~25℃时甘蓝夜蛾发育历期最长,世代发育历期为65.93 d,显著长于其他变温处理。且随温度升高,其发育历期缩短,变温范围为22~34℃时,该虫发育历期最短,世代发育历期为38.46 d,显著短于其他变温处理。在变温范围为25~37℃时,该虫不能正常完成个体发育。在日平均温度(T)19~28℃范围内(最大温差12℃),甘蓝夜蛾卵、幼虫及蛹期的发育速率随温度升高而加快,且各个虫态发育速率(V)拟合方程均符合线性方程模型:V卵期=0.125+0.048T, V幼虫期=0.023+0.012T, V蛹期0.027+0.013T, V成虫=0.073+0.47T。甘蓝夜蛾雌雄成虫的寿命随着日平均温度的升高而逐渐缩短,雌雄成虫寿命在日变温范围13~25℃时最长,分别为7.91 d和8.00 d;在变温范围22~34℃时最短,分别为3.00 d和3.57 d。甘蓝夜蛾卵、幼虫、蛹、成虫发育起点温度分别为7.98, 6.54, 9.36和10.78℃,有效积温依次为87.00, 607.36, 351.51和108.52 d·℃。16~28℃的变温范围更适合甘蓝夜蛾种群的生存与繁殖,其种群趋势指数I为117.81。【结论】甘蓝夜蛾属于偏低温适应性害虫,对高温环境适应能力较低。研究结果为进一步研究甘蓝夜蛾自然种群发生规律及其发生期、发生量预测预报提供了科学依据。  相似文献   

3.
The African cheetah (Acinonyx jubatus) is an unusual species because of its extremely low amount of biochemical genetic variation. A comparative analysis of morphological variation of 16 cranial characters from four species of Felidae (ocelot, Leopardus pardalus; margay, L. wiedii; leopard, Panthera pardus; and cheetah) was undertaken to evaluate the consequence of biochemical monomorphism on morphological variation. The species were selected because the cheetah has been shown previously to possess extremely low amounts of biochemical genetic variation as opposed to the other three species which retain comparatively high levels of allozyme heterozygosity. The cheetah sample showed dramatically greater fluctuating asymmetry but was not outstanding in morphological variability. Elevated levels of fluctuating asymmetry have been interpreted as a reflection of developmental instability, which is a common consequence of inbreeding. The inverse correlation of genetic variation and developmental stability (homeostasis) observed here fulfills prior expectations and further emphasizes the genetic invariability of the cheetah species.  相似文献   

4.
P. A. Parsons 《Genetica》1993,89(1-3):245-253
1. Little evolutionary change may occur at species borders since the cost of accommodating environmental stresses is high. Extreme examples of such stasis include cave animals in stable stressed environments and ‘living fossils’ in widely fluctuating stressed environments. 2. Variability from the molecular to the organismic level tends to be high under extreme stress. At the developmental level, the fitness of such variants may be low. This means that much developmental variability in natural populations may have little evolutionary significance. 3. Rapid evolutionary change of morphological traits is most likely to be based upon genes acting late in a developmental pathway under conditions which are ecologically and energetically permissive. 4. Although some increases in resistance to temperature extremes have been recorded in laboratory selection experiments, major extensions of extremes in natural populations appear difficult to achieve. The energetic costs of surviving extremes at species borders implies that the evolution of major developmental and morphological shifts is more likely to be a feature of populations of more equable habitats.  相似文献   

5.
6.
The adverse effects of high temperatures on the early life stages of anadromous whitefish Coregonus lavaretus were experimentally examined by assessing fertilization success, the percentage of developmental abnormalities, cumulative mortality and the rate of embryogenesis across a range of temperatures. Temperatures ≥ 7° C increased the proportion of unfertilized and abnormally dividing eggs, deformed embryos and consequent mortality. The higher the temperature, the more severe were the effects. When eggs were fertilized and constantly incubated at various temperatures, the effective level for 50% of the eggs and embryos (EL50) of temperature was 7·6° C at the developmental stage when eye pigmentation was visible. Fewer developmental abnormalities and a lower cumulative mortality rate were observed when embryos were exposed to high temperatures from the later, gastrula stage, than from fertilization or the four‐cell stage. Irrespective of retarded development in terms of day‐degrees (i.e. the sum of daily mean temperatures), a high incubation temperature reduced the development time of C. lavaretus, leading to earlier hatching, and hatched fry were shorter than at the reference temperature of 4–5° C. Global warming will particularly pose risks for stenothermic species such as C. lavaretus, with early life stages being especially susceptible. Thus, relatively small increases and fluctuations in river water temperatures during the spawning season of this anadromous species may have substantial negative impacts on its recruitment and population persistence.  相似文献   

7.
SUMMARY. 1. Soyedina carolinensis Claassen, a leaf shredding stonefly, was reared in a series of three laboratory experiments from early instar to adult on different species of deciduous leaves and at various constant and fluctuating temperature regimes.
2. Experiment 1, which involved rearing larvae on fourteen different leaf diets at ambient stream temperatures, showed that diet significantly affected larval growth and adult size but did not affect overall developmental time.
3. Experiment 2, which involved rearing larvae on five different leaf diets at each of three fluctuating temperature regimes (viz ambient White Clay Creek (WCC), ambient WCC+3°C, and ambient WCC+6°C), showed that: (i) adding 6°C to the normal temperature regime of WCC was lethal to 99% of the larvae regardless of diet; and (ii) warming WCC by 3°C did not affect developmental time but did significantly reduce adult size relative to adults reared at WCC temperatures on certain diets.
4. Experiment 3, which involved rearing larvae on five different leaf diets at each of five constant temperatures (viz 5, 10, 15, 20, 25°C), showed that: (i) temperature significantly affected the mortality, growth, and development time of larvae whereas diet only affected larval growth and mortality; (ii) temperatures at or near 10°C yielded maximum larval growth and survival for most diets; (iii) at 5°C, larval mortality was high and growth was low resulting in a few small adults for most diets; (iv) larval mortality was at or near 100% at 15°C regardless of diet; and (v) no larvae survived at 20 and 25°C.  相似文献   

8.
Understanding the capacity for different species to reduce their susceptibility to climate change via phenotypic plasticity is essential for accurately predicting species extinction risk. The climatic variability hypothesis suggests that spatial and temporal variation in climatic variables should select for more plastic phenotypes. However, empirical support for this hypothesis is limited. Here, we examine the capacity for ten Drosophila species to increase their critical thermal maxima (CTMAX) through developmental acclimation and/or adult heat hardening. Using four fluctuating developmental temperature regimes, ranging from 13 to 33 °C, we find that most species can increase their CTMAX via developmental acclimation and adult hardening, but found no relationship between climatic variables and absolute measures of plasticity. However, when plasticity was dissected across developmental temperatures, a positive association between plasticity and one measure of climatic variability (temperature seasonality) was found when development took place between 26 and 28 °C, whereas a negative relationship was found when development took place between 20 and 23 °C. In addition, a decline in CTMAX and egg‐to‐adult viability, a proxy for fitness, was observed in tropical species at the warmer developmental temperatures (26–28 °C); this suggests that tropical species may be at even greater risk from climate change than currently predicted. The combined effects of developmental acclimation and adult hardening on CTMAX were small, contributing to a <0.60 °C shift in CTMAX. Although small shifts in CTMAX may increase population persistence in the shorter term, the degree to which they can contribute to meaningful responses in the long term is unclear.  相似文献   

9.
Insect host-parasitoid systems are often modeled using delay-differential equations, with a fixed development time for the juvenile host and parasitoid stages. We explore here the effects of distributed development on the stability of these systems, for a random parasitism model incorporating an invulnerable host stage, and a negative binomial model that displays generation cycles. A shifted gamma distribution was used to model the distribution of development time for both host and parasitoid stages, using the range of parameter values suggested by a literature survey. For the random parasitism model, the addition of biologically plausible levels of developmental variability could potentially double the area of stable parameter space beyond that generated by the invulnerable host stage. Only variability in host development time was stabilizing in this model. For the negative binomial model, development variability reduced the likelihood of generation cycles, and variability in host and parasitoid was equally stabilizing. One source of stability in these models may be aggregation of risk, because hosts with varying development times have different vulnerabilities. High levels of variability in development time occur in many insects and so could be a common source of stability in host-parasitoid systems.  相似文献   

10.
Recently a heat shock protein (Hsp90) has been implicated as controlling the expression of cryptic genetic variation through buffering developmental processes. The release of variability in canalized characters following Hsp90 inhibition has been established in model species including Drosophila melanogaster and Arabidopsis thaliana , but has not yet been examined in species with limited distributions. To test if Hsp90 has a role in releasing phenotypic variation in rainforest Drosophila species, developing larvae from a large (> 1000 individuals) outbred population of Drosophila birchii were treated with the Hsp90 inhibitors geldanamycin and radicicol, and morphological traits, desiccation resistance, and life-history traits were measured. The means of all traits were influenced by inhibition. Although only the phenotypic variances of two canalized bristle traits were affected consistently, variability for two of the continuously varying traits (fecundity and development time) were also affected, albeit inconsistently. There was also no effect of Hsp90 inhibition on the developmental stability of the morphological traits as measured by fluctuating asymmetry. Hsp90 inhibition did not increase phenotypic variability in desiccation resistance, a trait previously shown to represent an evolutionary limit in this species. These results question the extent to which Hsp90 buffers variation for both quantitative and discrete traits, and highlight the need for further empirical studies to determine the involvement of Hsp90 in canalization and developmental stability. Nevertheless the results demonstrated increased variability in canalized traits, consistent with observations in model systems. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 457–465.  相似文献   

11.
Developmental rate isomorphy in insects and mites   总被引:1,自引:0,他引:1  
When the proportion of total developmental time spent in a particular developmental stage does not change with temperature, an organism shows "rate isomorphy." This is the case only if the lower developmental threshold is the same for all developmental stages. In this study, the incidence of rate isomorphy in seven species of mites and 342 species from 11 insect orders (some represented by several populations) was determined. Whether a species shows rate isomorphy or not was determined over a range of temperatures where the relationship between the rate of development and temperature is linear. Proportion of total developmental time spent in a particular stage was plotted against temperature and the existence of rate isomorphy inferred from a zero change in proportion. Rate isomorphy was detected in 243 (57%) of 426 populations. In the rest of the cases, rate isomorphy was violated by deviations in the proportion of time spent in a stage by an average of 0.2% (range 4.5E-06% to 2.8%) at the mean of the range of temperatures of all the data sets (11 degrees C). The violations occurred most frequently at the extremes of the linear phase, which is attributed to methodical biases, mortality at low temperatures, or too coarse an estimate of developmental time at high temperatures. Similarly, a meta-analysis also revealed an overall prevalence of rate isomorphy. Consequently, in insect and mite species, all the developmental stages appear to have the same population-specific lower developmental threshold. The existence of rate isomorphy could be of great practical importance, for example, in the timing of life-history events and in determining preadult thermal requirements. There are also indications that it may act as a phylogenetic constraint.  相似文献   

12.
【目的】明确变温与粘虫Mythimna separata(Walker)生长发育和生殖的关系及变温条件下粘虫主要能源物质代谢的变化规律。【方法】将粘虫卵置于光周期均为14L∶10D,温度分别为25℃和30℃日恒温和白天30℃、夜晚20℃日变温的条件下饲养,观察记录25℃和30/20℃下的成虫产卵及卵巢管发育情况,再取30℃和30/20℃下饲养获得的3龄幼虫、6龄幼虫、蛹和1日龄成虫,测定其糖原、海藻糖和甘油三酯3种能源物质的含量及海藻糖酶、3-磷酸甘油醛脱氢酶、3-磷酸甘油脱氢酶及3-羟酰辅酶A脱氢酶等4种主要能源物质代谢酶的活性。【结果】25℃与30/20℃饲养条件下相比,1日龄雌成虫卵巢管发育明显滞后,但单雌产卵量显著较多;蛹期糖原、海藻糖和甘油三酯的含量均高于3龄和6龄幼虫,成虫期各能源物质含量均较低。30/20℃日变温下粘虫体内供试3种能源物质的含量显著高于30℃日恒温(6龄幼虫和蛹期甘油三酯含量在两温度下无显著差异);温度变化对供试4种酶活性的影响差异显著。【结论】温度变化对粘虫的生长发育和繁殖具有显著的影响。在粘虫生长发育过程中以糖代谢为主;变温会加速糖代谢,减缓部分发育阶段的脂代谢,更有利能源物质的积累。  相似文献   

13.
As a prevalent species complex in temperate estuaries and salt marshes of the Northern Hemisphere, populations of Eurytemora affinis that inhabit these environments must be adapted to salinity fluctuations. Some populations have invaded freshwater environments. In this work, we focus on the combined effects of temperature and salinity fluctuations on mortality rates and development time of the first naupliar stages under starvation. Two temperatures (10 and 15 °C) and eight salinities, ranging from 0 to 35 psu are investigated. We show (i) that among all experimental conditions the optimal temperature and salinity for naupliar survival and development are 15 psu and 15 °C, and (ii) that only the most extreme salinities (i.e. 0 and 35 psu) have a negative effect on naupliar survival. Nauplii develop faster and reach a higher developmental stage at 15 than at 10 °C, independent of salinity. The relevance of this metabolic adaptive pattern is discussed in the general framework of in situ behavior, tidal forcing and biogeographic variability, as well as the potential sources of the observed individual variability.  相似文献   

14.
The effect of stressful (31 degrees C) and nonstressful (25 degrees C) growth temperatures on quantitative variation and developmental stability (fluctuating asymmetry) of Drosophila melanogaster was examined in a short-term selection experiment on sternopleural bristle number. Realized heritabilities based on 10 generations of selection in an upward direction did not differ between the two temperature regimes, which indicated that additive genetic variation was not affected by a high, stressful temperature. Phenotypic variability and fluctuating asymmetry of sternopleural bristles were significantly higher under stressful conditions when averaged over generations, although most pairwise comparisons in separate generations showed nonsignificant differences between temperatures.  相似文献   

15.
It has been suggested that minor, fluctuating differences in size of bilateral traits could validly indicate individual differences in developmental stability. One plausible reason for instability to occur could be lowered population size, which has been suggested to increase fluctuating asymmetry due to inbreeding, for example. We measured seven wing asymmetries of three Coenonympha butterfly species in central Sweden. One species is abundant (nobreak C. pamphilus), one rather common (C. arcania), and one rare (C. hero). We expected that if fluctuating asymmetry is a reliable indicator of population quality and thus a useful tool for conservation purposes, the most abundant species should show lowest asymmetry and the most endangered, the highest. Contrary to our expectations, the highest wing asymmetry was found in the relatively common species C. arcania and the most abundant and rare species did not show significant differences in levels of wing asymmetry. Our results obtained from three Coenonympha species hence suggest that the use of fluctuating asymmetry as an indicator of population conservation status may be misleading. Possible increase in asymmetry of small and/or isolated populations of butterflies may be masked by local differences in environmental conditions that could have high impact on bilateral development as well.  相似文献   

16.
While developmental plasticity can facilitate evolutionary diversification of organisms,the effects of water levels as an environmental pressure on tiger frogs remains unclear.This study clarifies the relationship by studying the responses of tiger frog(Hoplobatrachus chinensis)tadpoles to simulated hydroperiods(i.e.,constant low water levels,constant high water levels,increasing water levels,decreasing water levels,rapid changes in water levels and gradual fluctuations in water levels)in a laboratory setting.ANOVA analysis showed that none of the water level treatments had any significant effect on the total length,body mass,or developmental stages of H.chinensis tadpoles half way through development(11 days old).Tadpoles raised in rapidly fluctuating water levels had protracted metamorphosis,whereas tadpoles raised under low and gradually fluctuating water levels had shortened metamorphosis.None of the water level treatments had a significant effect on the snout-vent length(SVL)or body mass of H.chinensis tadpoles at Gosner stage 42,or on the body mass of tadpoles at Gosner stage 45.However,the tadpoles raised in high levels and rapidly fluctuating water levels,significantly larger SVL at Gosner stage 45,while ones under gradually fluctuating water levels had smaller SVL than the other groups.Time to metamorphosis was positively correlated with body size(SVL)at metamorphosis in H.chinensis tadpoles.H.chinensis tadpoles under constant low water level had the highest mortality rate among all the treatments(G-test).Moreover,ANOVA and ACNOVA(with body length as the covariate)indicated that water levels had no significant effect on either the morphology(i.e.head length,head width,forelimb length,hindlimb length and body width)or the jumping ability of juvenile H.chinensis.These results suggest that the observed accelerated metamorphosis and high mortality of H.chinensis tadpoles under decreasing water level treatment was driven by density-induced physical interactions among increasing conspecifics.  相似文献   

17.
Early ontogenetic adaptations reflect the evolutionary history of a species. To understand the evolution of the deep-sea fauna and its adaptation to high pressure, it is important to know the effects of pressure on their shallow-water relatives. In this study we analyse the temperature and pressure tolerances of early life-history stages of the shallow-water species Mytilus edulis. This species expresses a close phylogenetic relationship with hydrothermal-vent mussels of the subfamily Bathymodiolinae. Tolerances to pressure and temperature are defined in terms of fertilization success and embryo developmental rates in laboratory-based experiments. In M. edulis, successful fertilization under pressure is possible up to 500 atm (50.66 MPa), at 10, 15 and 20 degrees C. A slower embryonic development is observed with decreasing temperature and with increasing pressure; principally, pressure narrows the physiological tolerance window in different ontogenetic stages of M. edulis, and slows down metabolism. This study provides important clues on possible evolutionary pathways of hydrothermal vent and cold-seep bivalve species and their shallow-water relatives. Evolution and speciation patterns of species derive mostly from their ability to adapt to variable environmental conditions, within environmental constraints, which promote morphological and genetic variability, often differently for each life-history stage. The present results support the view that a direct colonization of deep-water hydrothermal vent environments by a cold eurythermal shallow-water ancestor is indeed a possible scenario for the Mytilinae, challenging previous hypothesis of a wood/bone to seep/vent colonization pathway.  相似文献   

18.
在过去的十年中, Zaprionus indianus这一温带适应性果蝇已经入侵印度次大陆, 并扩大了其在该地区的分布。Z. indianus能成功入侵是由于它具有很强的适应性和对极端生理条件的耐受性。对Z. indianus (温带狭域分布种类) 和黑腹果蝇Drosophila melanogaster (全球广域分布种类)在极端温度下未成熟期和成虫期发育阈值的比较研究表明, 两者的死亡率和发育起点温度存在显著差异。为了检测越冬期间未成熟期和成虫期抗逆性和存活率的变化, 以采自印度温带和热带不同地点的Z. indianus种群进行饲养实验。在温带地区的田间养虫笼中以及恒定的实验室条件下监测这些种群的卵孵化率和成虫存活率, 直至全部成虫死亡。结果表明, 由于温带地区卵孵化率和存活率高, 导致总的孵化率和存活率在不同纬度间存在显著差异。卵至成虫发育实验结果表明, 低温条件下产下的卵在温度适中时成功发育成成虫。由此可见, 这种昆虫在未成熟期具有的气候适应性以及在成虫期具有的抗逆性可为该物种提供季节性保护。考虑到气候变暖情况, 即温度增加0.6℃, 温度的少许改变都可能导致种群存活能力的显著增强和发育历期缩短。这些结果可解释Z. indianus为什么能够轻易突破障碍并适应新的环境。  相似文献   

19.
A stage‐structured Leslie matrix model of a partial, discrete population of Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) ticks was developed to elucidate the impact of climate trends on the distribution and phenology of this species in the western Palaearctic. The model calculates development and mortality rates for each instar and evaluates recruitment rates based on the development of the tick population. The model captures the changes in development and mortality rates, providing a coherent index of performance correlated with the tick's geographic range. Maximum development rates are recorded for latitudes south of 36 °N and are spatially correlated with sites of maximum temperature, highest saturation deficit and highest mortality. The maximum available developmental time (the total annual time during which temperature allows development) for I. ricinus in the western Palaearctic is < 45% of the total year. North of 60 °N, available developmental time decreases sharply to only 15% of the year. The latitudinal boundary at which survival rates sharply drop is 43–46 °N, clearly delimiting the classically recognized extent of the main tick populations. The pattern of activity for larval–nymphal synchrony shows a clear west–east pattern. The model demonstrates the impact of climate according to tick stage and geographic location, and provides a practical framework for testing how the tick's lifecycle is affected by climate change.  相似文献   

20.
The dieldrin and diazinon resistance systems of the Australian sheep blowfly (Lucilia cuprina) have been used previously to relate stress, departures from bilateral symmetry, developmental stability and relative fitness. These systems are now used to consider stress and asymmetry in a developmental context. Larval to adult development is shown to be significantly impaired after arrested development at 8 degrees C, however the asymmetry score of adults of a given genotype is similar after arrested or continuous development. Selection against dieldrin-resistant and unmodified diazinon-resistant genotypes occurs during arrested development because greater proportions of these genotypes pupae at 8 degrees C than do susceptible or modified diazinon-resistant genotypes. Pre-pupae of all genotypes complete development equally successfully when transferred from 8 degrees C to 27 degrees C. Adults fail to emerge when pupae formed at 8 degrees C undergo this temperature transition. Temperature-shift experiments show the asymmetry score is determined between pre-pupal and pupal stages of the life cycle. This stage occurs at 27 degrees C in arrested and continuously developing cultures providing an explanation for the independence of stress, selective mortality during developmental arrest and asymmetry score. The results emphasize the need for genetic, environmental and developmental data before an asymmetry phenotype can be directly related to developmental stability and relative fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号