首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 X 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 X 10(4)M-1-s-1 and 1.6 X 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.  相似文献   

2.
The kinetics of the reaction of fully reduced membrane bound cytochrome oxidase with CO following photolysis of the fully reduced cytochrome oxidase-CO complex habe been re-examined by re-analysing the data of Clore and Chance (1978) Biochem. J. 175, 709-725) at six temperatures in the 178-203 K range simultaneously at only a single wavelength pair, 444-463 nm. The choice of the 444-463 nm wavelength pair was based on the fact that the absorbance change produced at 444-463 nm on photolysis of the CO complex is sufficiently large and the separation between monitoring and reference wavelengths sufficiently small to render the effects of any possible time dependent scattering changes insignificant. On the basis of our analysis only a two step mechanism (Model 1 of Clore and Chance (1978) Biochem. J. 175, 709-725) satisfies the triple requirement of a S.D. within the standard error of the data, a random distribution of residuals and good determination of the optimized parameters. The single step mechanism of De Fonseka and Chance (1978) Biochem. J. 175, 1137-1138) fails to satisfy all three requirements. The pure difference spectra of species Ic minus E, E minus IIc and Ic minus IIc are calculated from the computed kinetics of the individual species and repetitive slow wavelength scanning difference spectra (reaction sample minus the CO complex) taken during the course of the reaction of fully reduced cytochrome oxidase with CO at 176 K.  相似文献   

3.
The transient electron transfer (ET) interactions between cytochrome c1 of the bc1-complex from Paracoccus denitrificans and its physiological redox partners cytochrome c552 and cytochrome c550 have been characterized functionally by stopped-flow spectroscopy. Two different soluble fragments of cytochrome c1 were generated and used together with a soluble cytochrome c552 module as a model system for interprotein ET reactions. Both c1 fragments lack the membrane anchor; the c1 core fragment (c1CF) consists of only the hydrophilic heme-carrying domain, whereas the c1 acidic fragment (c1AF) additionally contains the acidic domain unique to P. denitrificans. In order to determine the ionic strength dependencies of the ET rate constants, an optimized stopped-flow protocol was developed to overcome problems of spectral overlap, heme autoxidation and the prevalent non-pseudo first order conditions. Cytochrome c1 reveals fast bimolecular rate constants (10(7) to 10(8) M(-1) s(-1)) for the ET reaction with its physiological substrates c552 and c550, thus approaching the limit of a diffusion-controlled process, with 2 to 3 effective charges of opposite sign contributing to these interactions. No direct involvement of the N-terminal acidic c1-domain in electrostatically attracting its substrates could be detected. However, a slight preference for cytochrome c550 over c552 reacting with cyochrome c1 was found and attributed to the different functions of both cytochromes in the respiratory chain of P. denitrificans.  相似文献   

4.
Cytochrome c oxidase (ox heart cytochrome aa3) is reduced on illumination in the presence of a photocatalyst system containing deazaflavin and EDTA. The photo-reduced enzyme reacts with oxygen at neutral pH to give a form of ferric enzyme, whereas a corresponding sample partially reduced by light in the absence of any photocatalyst reacts with oxygen to give an oxyferri species ('oxygenated' enzyme). Reduction by the photocatalyst system at an alkaline pH value (9.0) also gives rise to fully reduced oxidase (both haem groups ferrous). At these pH values the immediate product after oxygen addition is a species with a 605-606 nm absorption band, not identical with ferrous cytochrome a, but capable of oxidizing added cytochrome c. This intermediate, which is unstable at neutral pH, may be analogous to the 'compound B' obtained by Chance and co-workers [Chance, Saronio & Leigh (1975) J. Biol. Chem. 250, 9226-9237; Chance, Saronio & Leigh (1979) Biochem. J. 177, 931-941] at low temperatures.  相似文献   

5.
The time course of electron transfer in vitro between soluble domains of the Rieske iron-sulfur protein (ISP) and cytochrome f subunits of the cytochrome b(6)f complex of oxygenic photosynthesis was measured by stopped-flow mixing. The domains were derived from Chlamydomonas reinhardtii and expressed in Escherichia coli. The expressed 142-residue soluble ISP apoprotein was reconstituted with the [2Fe-2S] cluster. The second-order rate constant, k(2)((ISP-f)) = 1.5 x 10(6) m(-1) s(-1), for ISP to cytochrome f electron transfer was <10(-2) of the rate constant at low ionic strength, k(2)((f-PC))(> 200 x 10(6) m(-1) s(-1)), for the reduction of plastocyanin by cytochrome f, and approximately 1/30 of k(2)((f-PC)) at the ionic strength estimated for the thylakoid interior. In contrast to k(2)((f-PC)), k(2)((ISP-f)) was independent of pH and ionic strength, implying no significant role of electrostatic interactions. Effective pK values of 6.2 and 8.3, respectively, of oxidized and reduced ISP were derived from the pH dependence of the amplitude of cytochrome f reduction. The first-order rate constant, k(1)((ISP-f)), predicted from k(2)((ISP-f)) is approximately 10 and approximately 150 times smaller than the millisecond and microsecond phases of cytochrome f reduction observed in vivo. It is proposed that in the absence of electrostatic guidance, a productive docking geometry for fast electron transfer is imposed by the guided trajectory of the ISP extrinsic domain. The requirement of a specific electrically neutral docking configuration for ISP electron transfer is consistent with structure data for the related cytochrome bc(1) complex.  相似文献   

6.
The reaction of soluble mixed-valence-state (a3+CuA 2+.CuB + A32+) cytochrome oxidase with O2 at low temperature was studied by optical and e.p.r. spectroscopy. The existence of three intermediates [Clore & Chance (1978) Biochem. J. 173, 799-8101] was confirmed. From the e.p.r data it is clear that cytochrome a and CuA remain in the low-spin ferric and cupric states respectively throughout the reaction. No e.p.r. signals attributable to cytochrome a3 or CuB were seen in the intermediates. The difference spectra (intermediates minus unliganded mixed-valence-state cytochrome oxidase) and absolute spectra of the three intermediates were obtained. The chemcal nature of the three intermediates is discussed in terms of their spectroscopic properties. A catalytic cycle for cytochrome oxidase is proposed.  相似文献   

7.
Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways.  相似文献   

8.
Structural analysis of the bc(1) complex suggests that the extra membrane domain of iron-sulfur protein (ISP) undergoes substantial movement during the catalytic cycle. Binding of Qo site inhibitors to this complex affects the mobility of ISP. Taking advantage of the difference in the pH dependence of the redox midpoint potentials of cytochrome c(1) and ISP, we have measured electron transfer between the [2Fe-2S] cluster and heme c(1) in native and inhibitor-treated partially reduced cytochrome bc(1) complexes. The rate of the pH-induced cytochrome c(1) reduction can be estimated by conventional stopped-flow techniques (t1/2, 1-2 ms), whereas the rate of cytochrome c(1) oxidation is too high for stopped-flow measurement. These results suggest that oxidized ISP has a higher mobility than reduced ISP and that the movement of reduced ISP may require an energy input from another component. In the 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT)-inhibited complex, the rate of cytochrome c(1) reduction is greatly decreased to a t1/2 of approximately 2.8 s. An even lower rate is observed with the stigmatellin-treated complex. These results support the idea that UHDBT and stigmatellin arrest the [2Fe-2S] cluster at a fixed position, 31 A from heme c(1), making electron transfer very slow.  相似文献   

9.
10.
The cytochrome b6f complex is a dimeric protein complex that is of central importance for photosynthesis to carry out light driven electron and proton transfer in chloroplasts. One molecule of chlorophyll a was found to associate per cytochrome b6f monomer and the structural or functional importance of this is discussed. We show that etioplasts which are devoid of chlorophyll a already contain dimeric cytochrome b6f. However, the phytylated chlorophyll precursor protochlorophyll a, and not chlorophyll a, is associated with subunit b6. The data imply that a phytylated tetrapyrrol is an essential structural requirement for assembly of cytochrome b6f.  相似文献   

11.
This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.  相似文献   

12.
H. Roberts  B. Hess 《BBA》1977,462(1):215-234
The steady-state kinetics of purified yeast cytochrome c oxidase were investigated at low ionic strength where the electrostatic interaction with cytochrome c is maximized. In 10 mM cacodylate/Tris (pH 6.5) the oxidation kinetics of yeast iso-1-cytochrome c were sigmoidal with a Hill coefficient of 2.35, suggesting cooperative binding. The half-saturation point was 1.14 μM. Horse cytochrome c exhibited Michaelis-Menten kinetics with a higher affinity (Km = 0.35 μM) and a 100% higher maximal velocity.In 67 mM phosphate the Hill coefficient for yeast cytochrome c decreased to 1.42, and the species differences in Hill coefficients were lessened. Under the latter conditions, a yeast enzyme preparation partially depleted of phospholipids was activated on addition of diphosphatidylglycerol liposomes. When the enzyme was incorporated into sonicated yeast promitochondrial particles the apparent Km for horse cytochrome c was considerably lower than the value for the isolated enzyme.ATP was found to inhibit both the isolated oxidase and the membrane-bound enzyme. With the isolated enzyme in 10 mM cacodylate/Tris, 3 mM ATP increased the half-saturation point with yeast cytochrome c 3-fold, without altering the maximal velocity or the Hill coefficient. 67 mM phosphate abolished the inhibition of the isolated oxidase by ATP.The increase in affinity for cytochrome c produced by binding the oxidase to the membrane was not observed in the presence of 3 mM ATP, with the result that the membrane-bound enzyme was more sensitive to inhibition by ATP. ADP was a less effective inhibitor than ATP, and did not prevent the inhibition by ATP.It is proposed that non-specific electrostatic binding of cytochrome c to phospholipid membranes, followed by rapid lateral diffusion, is responsible for the dependence of the affinity on the amount and nature of the phospholipids and on the ionic strength.ATP may interfere with the membrane-facilitated binding of cytochrome c by a specific electrostatic interaction with the membrane or by binding to cytochrome c.  相似文献   

13.
W. Rühle  A. Wild 《Planta》1979,146(4):377-385
The oxidation and reduction of cytochrome f and P-700 is measured spectrophotometrically in leaves of low-light and high-light plants. After illumination with red light, an induction phenomenon for cytochrome f oxidation is observed which indicates a regulation of photosystem I activity through energy distribution between the pigment systems by the energy state of the membrane. After far-red excitation the reduction of cytochrome f in the dark is much slower in low-light leaves. This shows that cyclic electron transport is not improved in low-light plants under these conditions. P-700 is oxidized on excitation with far-red light. However, with high intensities of far-red light, P-700 is partially reduced again which is due to a low extent of photosystem II excitation with the far-red used in the experiments. The low-light leaves show greater sensitivity of photosystem II to this excitation. The initial rate of the cytochrome f oxidation-rate is the same in low-light and high-light leaves. This shows that several P-700 are connected with only one electron transport chain. The consequences of these results concerning the tripartite concept and the photosynthetic unit are discussed. In the high-light plants the experimental data can be well explained by the tripartite organization of the photosynthetic unit. In low-light plants, however, a multipartite organization has to be postulated. In the partition regions of the grana, several antennae systems I, antennae systems II, and light-harvesting complexes can communicate with one electron transport chain.Abbreviations CP I P-700-chlorophyll a-protein - Cyt f cytochrome f - DCMU 3-(3,4 dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - LA leaf-area - PhAR photosynthetically active radiation - PS photosystem  相似文献   

14.
S He  S Modi  D S Bendall    J C Gray 《The EMBO journal》1991,10(13):4011-4016
Site-directed mutants of the pea plastocyanin gene in which the codon for the surface-exposed Tyr83 has been changed to codons for Phe83 and Leu83 have been expressed in transgenic tobacco plants. The mutant proteins have been purified to homogeneity and their conformations shown not to differ significantly from the wild-type plastocyanin by 1H-NMR and CD. Overall rate constants for electron transfer (k2) from cytochrome f to plastocyanin have been measured by stopped-flow spectrophotometry and rate constants for binding (ka) and association constants (KA) have been measured from the enhanced Soret absorption of cytochrome f on binding plastocyanin. These measurements allow the calculation of the intrinsic rate of electron transfer in the binary complex. An 8-fold decrease in the overall rate of electron transfer to the Phe83 mutant is due entirely to a decreased association constant for cytochrome f, whereas the 40-fold decrease in the overall rate of electron transfer to the Leu83 mutant is due to weaker binding and a lower intrinsic rate of electron transfer. This indicates that Tyr83 is involved in binding to cytochrome f and forms part of the main route of electron transfer.  相似文献   

15.
The reduction with dithionite of neutrophil cytochrome b-558, implicated in superoxide generation by activated neutrophils, was investigated by a stopped-flow technique in non-ionic-detergent extracts of the membranes and in crude membrane particles. The dependence of the pseudo-first-order rate constants on the concentration of dithionite was consistent with a mechanism of reduction that involves the dithionite anion monomer SO2.- as the reactive species. The estimated second-order rate constant was 7.8 X 10(6) M-1 X S-1 for Lubrol PX-solubilized cytochrome b-558 and 5.1 X 10(6) M-1 X S-1 for the membrane-bound protein. The similarity of the kinetic constants suggests that solubilization did not introduce gross changes in the reactive site. Imidazole and p-chloromercuribenzoate, known as inhibitors of NADPH oxidase, did not affect significantly cytochrome b-558 reduction rates. The reaction rate of cytochrome b-558 with dithionite exhibited a near-zero activation energy. The first-order rate constant for reduction decreased with increasing ionic strength, indicating a positive effective charge on the reacting protein.  相似文献   

16.
Reduction kinetics of cytochrome f, plastocyanin (PC) and P(700) ('high-potential chain') in thylakoids from spinach were followed after pre-oxidation by a saturating light pulse. We describe a novel approach to follow PC redox kinetics from deconvolution of 810-860 nm absorption changes. The equilibration between the redox-components was analyzed by plotting the redox state of cytochrome f and PC against that of P(700). In thylakoids with (1) diminished electron transport rate (adjusted with a cytochrome bf inhibitor) or (2) de-stacked grana, cytochrome f and PC relaxed close to their thermodynamic equilibriums with P(700). In stacked thylakoids with non-inhibited electron transport, the equilibration plots were complex and non-hyperbolic, suggesting that during fast electron flux, the 'high-potential chain' does not homogeneously equilibrate throughout the membrane. Apparent equilibrium constants <5 were calculated, which are below the thermodynamic equilibrium known for the 'high potential chain'. The disequilibrium found in stacked thylakoids with high electron fluxes is explained by restricted long-range PC diffusion. We develop a model assuming that about 30% of Photosystem I mainly located in grana end-membranes and margins rapidly equilibrate with cytochrome f via short-distance transluminal PC diffusion, while long-range lateral PC migration between grana cores and distant stroma lamellae is restricted. Implications for the electron flux control are discussed.  相似文献   

17.
The reaction of Euglena gracilis cytochrome c-552 (cytochrome f) with the nonphysiological reactants potassium ferrocyanide, potassium ferricyanide, sodium ascorbate, sodium dithionite, and Chromatium vinosum high potential nonheme iron protein was studied by stopped-flow and temperature-jump kinetic methods. The reaction of the purified, water-soluble protein with the reactants was investigated as a function of ionic strength, pH, and temperature. The results demonstrated that reduction and oxidation takes place at a negatively charged site on the cytochrome c-552 surface. Participation of specific amino acid residues in electron transfer is implicated from the pH results. The results obtained for the nonphysiological reactions of cytochrome c-552 are compared with available data for horse heart cytochrome c and Rhodospirillum rubrum cytochrome c2. The results strongly suggest that Euglena gracilis cytochrome c-552 undergoes nonphysiological oxidation and reduction by a mechanism different from that found for cytochrome c or cytochrome c2.  相似文献   

18.
The kinetics and thermodynamics of the reaction of mixed valence state membrane-bound cytochrome oxidase with CO over the 178-203 K range has been studied by multichannel optical spectroscopy at three wavelength pairs (444-463 nm in the Soret region, and 590-630 and 608-630 nm in the alpha region) and analysed by non-linear optimization techniques. As in the case of the fully reduced membrane-bound cytochrome oxidase-CO reaction (Clore, G.M. and Chance, E.M. (1978) Biochem J. 175, 709-725), the normalized progress curves at the three wavelength pairs are significantly different indicating, on the basis of Beer's law, the presence of a minimum of three optically distinct species. The only model that satisfies the triple statistical requirement of a standard deviation within the standard error of the data, a random distribution of residuals and good determination of the optimized parameters, is a two species sequential mechanism: flash photolysis of the mixed valence state cytochrome oxidase-CO complex (species IIMC) yields unliganded mixed valence state cytochrome oxidase (species EM) and free CO which then recombine to form species IMC; species IMC is then converted into species IIMC. All the thermodynamic parameters describing the model are calculated and compared to those obtained for the fully reduced membrane-bound cytochrome oxidase-CO reaction (Clore and Chance (1978) Biochem. J. 175, 709-725). Although there are some qualitative similarities in the kinetics and thermodynamics of the reactions of mixed valence state (alpha 23+Cu+B.ALPHA 3+Cu2+A) and fully reduced (a3 2+Cu B + . a2+Cu A+) cytochrome oxidase with CO, there are large and significant quantitative differences in zero-point activation energies and frequency factors; over the temperature range studied, the mixed valence state cytochrome oxidase-CO reaction is found to proceed at a significantly slower rate than the fully reduced cytochrome oxidase-CO reaction. These differences indicate that changing the valence states of cytochrome a and CuA has a significant effect on the CO binding properties of cytochrome a 3 and possibly CuB.  相似文献   

19.
The formation of chlorophyll, cytochrome f, P-700, ribulose bisphosphate carboxylase as well as photosynthesis and Hill reaction activities were tested during the light-dependent greening process of the Chlorella fusca mutant G 10. Neither chlorophyll nor protochlorophyllide was detected in the darkgrown cells. When transferred to light the mutant cells developed chlorophyll and established its photosynthetic capacity after a short lag phase. In the in vivo absorption spectra a spectral shift of the red absorption peak position from 674 to 680 nm was indicated during the first 3 h of greening. Cytochrome f was already present in the dark-grown cells, but during the greening phase a threefold increase in the cytochrome f content could be seen. At the early stages of greening a characteristic primary oscillation in the content of cytochrome f was observed. P-700 was lacking in the dark and during the first 30 min of illumination. From the first to the second h of light a forced synthesis of P-700 took place and the time-course curve for the ratios of P-700/chlorophyll rose to a sharp maximum. The synthesis of P-700 started together with photosystem I activity and showed similar kinetics. We found the simultaneous appearance of photosystem II, photosystem I, and photosynthetic activities 30 min after the beginning of the illumination. Based on chlorophyll content they attained maximum activity after 2 h of light, but at this time photosystem I capacity proved to be remarkably higher than photosynthetic and photosystem II activities. Highest carboxylase activity existed in darkgrown cells. During the greening process the activity of the enzyme decreased continuously. After 2 h of illumination chlorophyll synthesis partially served to increase the size of the photosynthetic unit, which consequently led to a decrease in the light energy needed to saturate photosynthesis and also to a decrease of photosynthetic rate based on chlorophyll content.Abbreviations Chl chlorophyll - Cyt f cytochrome f - DPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - GSH glutathione - LH light-harvesting - PS photosystem - RuBP ribulose bisphosphate  相似文献   

20.
C Varotsis  G T Babcock 《Biochemistry》1990,29(32):7357-7362
Time-resolved resonance Raman spectra have been recorded during the reaction of fully reduced (a2+a3(2+)) cytochrome oxidase with dioxygen at room temperature. In the spectrum recorded at 800 microseconds subsequent to carbon monoxide photolysis, a mode is observed at 790 cm-1 that shifts to 755 cm-1 when the experiment is repeated with 18O2. The frequency of this vibration and the magnitude of the 18O2 isotopic frequency shift lead us to assign the 790-cm-1 mode to the FeIV = O stretching vibration of a ferryl-oxo cytochrome a3 intermediate that occurs in the reaction of fully reduced cytochrome oxidase with dioxygen. The appearance and vibrational frequency of this mode were not affected when D2O was used as a solvent. This result suggests that the ferryl-oxo intermediate is not hydrogen bonded. We have also recorded Raman spectra in the high-frequency (1000-1700 cm-1) region during the oxidase/O2 reaction that show that the oxidation of cytochrome a2+ is biphasic. The faster phase is complete within 100 microseconds and is followed by a plateau region in which no further oxidation of cytochrome a occurs. The plateau persists to approximately 500 microseconds and is followed by the second phase of oxidation. These results on the kinetics of the redox activity of cytochrome a are consistent with the branched pathway discussed by Hill et al. [Hill, B., Greenwood, C., & Nichols, P. (1986) Biochim. Biophys. Acta 853, 91-113] for the oxidation of reduced cytochrome oxidase by O2 at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号