首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The PGC-1 coactivators are important regulators of oxidative metabolism. We previously demonstrated that LRP130 is a binding partner of PGC-1alpha, required for hepatic gluconeogenesis. LRP130 is the gene mutated in Leigh syndrome French Canadian variant, a rare neurodegenerative disease. The importance of LRP130 in other, non-hepatocyte biology remains obscure. To better understand PGC-1 coactivator function in brown fat development, we explored the metabolic role of LRP130 in brown adipocyte differentiation. We show that LRP130 is preferentially enriched in brown fat compared with white, and induced in a PGC-1-dependent manner during differentiation. Despite intact PGC-1 coactivator expression, brown fat cells deficient for LRP130 exhibit attenuated expression of several genes characteristic of brown fat, including uncoupling protein 1. Oxygen consumption studies support a specific defect in proton leak due to attenuated uncoupling protein 1 expression. Notably, brown fat cell development common to both PGC-1 coactivators is governed by LRP130. Conversely, the cAMP response controlled by PGC-1alpha is not regulated by LRP130. These data implicate LRP130 in brown fat cell development and differentiation.  相似文献   

5.
6.
7.
8.
PGC-1alpha, a transcriptional coactivator involved in metabolism   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
11.
12.
13.
14.
15.
【目的】分析丙型肝炎病毒(HCV)核心蛋白(CORE)稳定表达对磷酸烯醇式丙酮酸羧基酶(PCK1)转录水平的影响,并分析HCV CORE调控PCK1转录的分子机制,为进一步阐明HCV感染致2型糖尿病机理的探讨提供新的思路。【方法】利用反转录病毒表达系统构建稳定表达HCV CORE的Huh7-lunet-core细胞系。采用Real-time PCR和萤光素酶报告基因技术检测Huh7-lunet-core细胞系中PCK1、FOXO1以及PGC-1α转录水平变化,并结合Western blot分析FOXO1的活性变化。【结果】HCV CORE的稳定表达显著增强PCK1的转录水平,HCV CORE不影响FOXO1的转录和表达水平,但降低FOXO1的磷酸化水平,激活了FOXO1的转录活性,并增强PGC-1α的mRNA表达水平。【结论】HCV CORE在Huh7-lunet细胞中的稳定表达激活FOXO1的转录活性,并与PGC-1α协同作用,上调PCK1的转录,从而导致肝糖异生过度发生,对HCV CORE调控PCK1转录的分子机制的揭示可能为HCV感染相关的糖尿病的治疗提供新的靶点。  相似文献   

16.
17.
18.
19.
20.
Processing of eukaryotic pre-mRNAs is an important step for the translation of proteins. These processing events include the addition of a cap structure at the 5' terminus of the pre-mRNA, the splicing out of introns and the acquisition of a polyadenosine tail at the 3' terminus of the pre-mRNA. It has now become apparent that the RNA processing events can significantly influence each other. RNA polymerase II appears as a key player in these processes, cooperating with numerous processing factors that are involved in capping, splicing, and polyadenylation. More specifically, the carboxyterminal domain of the large subunit of the enzyme plays a critical role in coordination of the processing events. The number of interactions between the various RNA processing events identified so far reflects the complexity of these reactions. As more studies focus on these interactions, additional links and cellular partners will undoubtedly be discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号