首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Coastal fast ice and underlying water of the northern Baltic Sea were sampled throughout the entire ice winter from January to late March in 2002 to study the succession of bacterial biomass, secondary production and community structure. Temperature gradient gel electrophoresis (TGGE) and sequencing of TGGE fragments were applied in the community structure analysis. Chlorophyll-a and composition of autotrophic and heterotrophic assemblages were also examined. Overall succession of ice organism assemblages consisted of a low-productive stage, the main algal bloom, and a heterotrophic post-bloom situation, as typical for the study area. The most important groups of organisms in ice in terms of biomass were dinoflagellates, plasticidic flagellates, rotifers and ciliates. Ice bacteria showed a specific succession not directly dependent on the overall succession events of ice organisms. Sequenced 16S rDNA fragments were mainly affiliated to α-, β-, and γ-proteobacterial phyla and Cytophaga–Flavobacterium–Bacteroides-group, and related to sequences from cold environments, also from the Baltic Sea. Temporal clustering of the TGGE fingerprints was stronger than spatial, although lower ice and underlying water communities always clustered together, pointing to the importance of ice maturity and ice–water interactions in shaping the bacterial communities.  相似文献   

2.
Horizontal variation of first-year landfast sea ice properties was studied in the Gulf of Finland, the Baltic Sea. Several scales of variation were considered; a number of arrays with core spacings of 0.2, 2 and 20 m were sampled at different stages of the ice season for small-scale patchiness. Spacing between these arrays was from hundreds of meters to kilometers to study mesoscale variability, and once an onshore–offshore 40-km transect was sampled to study regional scale variability. Measured variables included salinity, stable oxygen isotopes (18O), chlorophyll a (chl-a), nutrients and dissolved organic carbon. On a large scale, a combination of variations in the under-ice water salinity (ice porosity), nutrient supply and the stage of ice development control the build-up of ice algal biomass. At scales of hundreds of meters to kilometers, there was significant variability in several parameters (salinity, chl-a, snow depth and ice thickness). Analyses of the data from the arrays did not show evidence of significant patchiness at scales <20 m for algal biomass. The results imply that the sampling effort in Baltic Sea ice studies should be concentrated on scales of hundreds of meters to kilometers. Using the variations observed in the study area, the estimate for depth-integrated algal biomass in landfast sea ice in the Gulf of Finland (March 2003) is 5.5±4.4 mg chl-a m–2.  相似文献   

3.
Development of ice biota in a temperate sea area (Gulf of Bothnia)   总被引:3,自引:2,他引:1  
A study of sea ice biota was carried out in the Gulf of Bothnia (northern Baltic Sea) during the winter of 1989–1990. Samples (ice cores) were taken at a coastal station at regular time intervals during the ice season. Chlorophyll a concentration, algal species distribution, bacterial numbers, and primary and bacterial production were measured. Colonization of the ice began in January when daylight was low. As the available light increased, the algae started to grow exponentially. The vertical chlorophyll a distribution changed and algal species composition and biomass changed during the season. During the initial and middle phase of colonization, ice-specific diatoms, Nitzschia frigida and Navicula pelagica, dominated the algal biomass. Nutrients (PO4 3– and NO3j) were found to be depleted during the time of algal exponential growth. The maximum algal biomass exceeded 800 g C 1–1. The primary production supplied food for heterotrophic organisms. The presence of heterotrophic organisms of different trophic levels (bacteria, flagellates, ciliates and rotifers) indicated an active microbial food web.  相似文献   

4.
The response of Baltic Sea ice communities to changing light climate was studied in three subsequent 3 week in situ experiments on the SW coast of Finland. The investigation covered three different winter periods, short day with low solar angles leading to limited light in the ice, late winter with deep snow cover and early spring with melting snow and increasing light availability. The experimental setup consisted of transparent (no snow) and completely darkened (heavy snow cover) plexiglass tubes in which the ice cores were incubated in situ from 1 to 2 weeks. Changes in the concentrations of inorganic nutrients (NO3-–N, PO43−-–P, SiO4-–Si) and chlorophyll-a concentration in the phytoplankton community composition were recorded as responses to different light manipulations. Changes in inner ice light intensity in untreated ice as well as the temperature both in air and ice were recorded over the entire study period. Increased irradiance in late winter/early spring and during meltdown affected the chlorophyll-a amount in the sea ice. During these periods the phytoplankton community in the top layers decreased possibly as a consequence of photo-acclimation. Closer to the bottom of the ice, however, the increased inner ice light intensity induced algal growth. Complete exclusion of light stopped the algal growth in the whole ice column. Darkening the ice cores also slowed down the ice melting opposite to accelerated melting caused by increased light. The significant differences found in nutrient concentrations between the light and dark treatments were mostly explicable by changes in algal biomass. No obvious changes were observed in the phytoplankton community composition due to light manipulation, diatoms and heterotrophic flagellates dominating throughout the study period.  相似文献   

5.
A study was undertaken to examine the activity and composition of the seasonal Baltic Sea land-fast sea-ice biota along a salinity gradient in March 2003 in a coastal location in the SW coast of Finland. Using a multi-variable data set, the less well-known algal and protozoan communities, and algal and bacterial production in relation to the physical and chemical environment were investigated. Also, the first coincident measurements of bacterial production and dissolved organic matter (DOM) in a sea-ice system are reported. Communities in sea ice were clearly autotrophy-dominated with algal biomass representing 79% of the total biomass. Protozoa and rotifers made up 18% of biomass in the ice and bacteria only 3%. Highest biomasses were found in mid-transect bottom ice. Water column assemblages were clearly more heterotrophic: 39% algae, 12% bacteria and 49% for rotifers and protozoa. Few significant correlations existed between DOM and bacterial variables, reflecting the complex origin of ice DOM. Dynamics of dissolved organic carbon, nitrogen and phosphorus (DOC, DON and DOP) were also uncoupled. A functional microbial loop is likely to be present in the studied ice. Existence of an under-ice freshwater plume affects the ecosystem functioning: Under-ice water communities are influenced directly by river-water mixing, whereas the ice system seems to be more independent—the interaction mainly taking place through the formation of active bottom communities.  相似文献   

6.
Nutrient concentrations, chlorophyll-a, bacterial biomass and relative activity of denitrifying organisms were investigated from ice-core, brine and underlying water samples in February 1998 in the Gulf of Bothnia, Baltic Sea. Examined sea ice was typical for the Baltic Sea; ice bulk salinity varied from 0.1 to 1.6 psu, and in underlying water salinity was from 4.2 to 4.7 psu. In 2- to 3-months-old sea ice (thickness 0.4–0.6 m), sea-ice communities were at the winter stage; chl-a concentrations were generally below 1 mg m−3 and heterotrophic organisms composed 7–20% of organism assemblage. In 1-month-old ice (thickness 0.2–0.25 m), an ice spring bloom was already developing and chl-a concentrations were up to 5.6 mg m−3. In relation to low salinity, high concentrations of NH+ 4, NO 2, PO3+ 4 and SiOH4 were found in the ice column. The results suggest that the upper part of ice accumulates atmospheric nutrient load during the ice season, and nutrients in the upper 10–20 cm of ice are mainly of atmospheric origin. The most important biological processes controlling the sea-ice nutrient status are nutrient regeneration, nutrient uptake and nitrogen transformations. Nutrient regeneration is specially active in the middle parts of the 50- to 60-cm-thick ice and subsequent accumulation of nutrients probably enhances the ice spring bloom. Nitrite accumulation and denitrifying activity were located in the same ice layers with nutrient regeneration, which together with the observed significant correlation between the concentrations of nitrogenous nutrients points to active nitrogen transformations occurring in the interior layers of sea ice in the Baltic Sea. Accepted: 12 June 2000  相似文献   

7.
A. D. Rosemond 《Oecologia》1993,94(4):585-594
Using stream-side, flow-through channels, I tested for the effects of nutrients (NU) (nitrogen plus phosphorus), irradiance (L), and snail grazing (G) on a benthic algal community in a small, forested stream. Grazed communities were-dominated by a chlorophyte (basal cells ofStigeoclonium) and a cyanophyte (Chamaesiphon investiens), whereas ungrazed communities were comprised almost entirely of diatoms, regardless of nutrient and light levels. Snails maintained low algal biomass in all grazed treatments, presumably by consuming increased algal production in treatments to which L and NU were increased. When nutrients were increased, cellular nutrient content increased under ambient conditions (shaded, grazed) and biomass and productivity increased when snails were removed and light was increased. Together, nutrients and light had positive effects and grazing had negative effects on biomass (chlorophylla, AFDM, algal biovolume) and chlorophyll-and areal-specific productivity in ANOVAs. However, in most cases, only means from treatments in which all three factors were manipulated (ungrazed, +NU&L treatments) were significantly different from controls; effects of single factors were generally undetectable. These results indicate that all three factors simultaneously limited algal biomass and productivity in this stream during the summer months. Additionally, the effects of these factors in combination were in some cases different from the effects of single factors. For example, light had slight negative effects on some biomass parameters when added at ambient snail densities and nutrient concentrations, but had strong positive effects in conjunction with nutrient addition and snail removal. This study demonstrates that algal biomass and productivity can be under multiple constraints by irradiance, nutrients, and herbivores and indicates the need to employ multifactor experiments to test for such interactive effects.  相似文献   

8.
There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan‐Arctic scale. We sampled sea ice cores from MYI and first‐year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m2, a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice‐algal biomass and represent a reliable ice‐algal habitat due to the (quasi‐) permanent low‐snow surface of these features. We identified an ice‐algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice‐algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan‐Arctic CryoSat‐2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice‐algal habitat within the MYI‐covered region of 0.54 million km2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km2 (0.3% of total ice area) determined using the conventional block‐model classification, which assigns single‐parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice‐algal habitat during spring when food is sparse and many organisms depend on ice‐algae.  相似文献   

9.
Seasonal patterns in primary productivity and algal biomass in subtropical Florida lakes along increasing gradients of both dissolved organic color and phytoplankton biomass are presented. Chlorophyll a concentrations and gross primary productivity generally reached maxima during the summer and were most depressed in winter months, regardless of color or trophic classification. Primary productivity was more strongly correlated with chlorophyll a, nutrient concentrations and water clarity in clearwater (< 75 Pt units) than in colored (> 75 Pt units) systems. Amplitudes in algal biomass were considerably smaller than temperate lakes. Variability in primary production in Florida lakes was intermediate to patterns in the temperate zone and tropics, but was more closely aligned to northern latitudes. Within the Florida peninsula, variability of primary productivity decreased from north to south and corresponded to latitudinal gradients in climatic regimes.  相似文献   

10.
Summary During the austral summer of 1975–76 and winter of 1977 benthic and water column chlorophyll a and phaeopigments were measured at several sites along the east and west sides of McMurdo Sound, Antarctica. Estimates of in situ primary productivity were made at some McMurdo Sound locations. Additionally, water column samples were collected at 5 stations in the Ross Sea during January, 1976. Standing stock data are analyzed to identify seasonal and spatial patterns. Variability in algal standing stock was related to ambient light levels and appeared to be mediated by ice and snow cover whereby the highest algal standing stock was present under high light conditions (low ice and snow cover, shallow water, summer). Differences in published benthic invertebrate densities appear to be closely allied to differences in benthic primary production, and less so to in situ planktonic ice microalgal production.  相似文献   

11.
Algal communities and export of organic matter from sea ice were studied in the offshore marginal ice zone (MIZ) of the northern Barents Sea and Nansen Basin of the Arctic Ocean north of Svalbard by means of ice cores and short-term deployed sediment traps. The observations cover a total of ten stations within the drifting pack ice, visited over a period of 3 years during the period of ice melt in May and July. Maximum flux of particulate organic carbon and chlorophyll a from the ice at 1 m depth (1,537 mg C m−2 per day and 20 mg Chl a m−2 per day) exceeded the flux at 30 m by a factor of 2 during spring, a pattern that was reversed later in the season. Although diatoms dominated the ice-associated algal biomass, flagellates at times revealed similarly high biomass and typically dominated the exported algal carbon. Importance of flagellates to the vertical flux increased as melting progressed, whereas diatoms made the highest contribution during the early melting stage. High export of ice-derived organic matter and phytoplankton took place simultaneously in the offshore MIZ, likely as a consequence of ice drift dynamics and the mosaic structure of ice-covered and open water characteristic of this region.  相似文献   

12.
T. Sörlin 《Aquatic Ecology》1982,16(2-3):287-288
Summary The Baltic Sea, one of the largest brackish water areas in the world, can be characterized as a young, cold sea containing an impoverished ecosystem due to salinity stress. The present Baltic Sea was formed as late as 2000 to 2500 years ago when the Danish sounds became more narrow and shallow. The inflow of freshwater from the surrounding land areas caused the Baltic to gradually attain its brackish character. Today the Baltic covers an area of some 366,000 km2 as a series of basins separated by shallower areas and filled with about 22,000 km3 of brackish water. These basins are, from north to south, the Gulf of Bothnia, the Gulf of Finland, the Gotland Sea and the Bornholm Sea. The climate gradient ranges from almost arctic conditions in the extreme north to a more maritime climate in the southern parts. The North Sea salt water is connected to the Baltic through the shallow Kattegat and the sills in the Danish sounds. The inflow of salt water occurs in two different ways,viz. as a continuous flow along the bottom due to the salinity gradient and as pulses of salt water generated by the distribution of air pressure and the direction of the wind. The freshwater input (500 km3) from mainly the large rivers equals roughly the net outflow and stresses the south-bound current along the Swedish coast that also compensates for the salt water inflow. Tidal movements can be seen in the southern Baltic, but are of minor importance for the system. The residence time of the total water mass is 25 years and the hydrographical conditions within the different basins are stable and dominated by a permanent halocline, and a thermocline developing every spring. The salinity ranges from about 1–2 per mille in the innermost part of the Gulf of Bothnia to 10–15 per mille in the Bornholm Sea. Total vertical mixing takes place during winter in at least the northern parts of the sea. Due to the climate-gradient, the ice condition differs from about four months of total ice-cover in the inner parts of the Gulf of Bothnia to one month or less of coastal ice in the southern part of the Baltic. Thus, the seasonal effect is more pronounced in the northern parts.The living systems of the Baltic are reduced and adapted to these varying conditions. When comparing the deeper soft bottoms of the Gulf of Bothnia to the rest of the Baltic, the following pattern can be seen. The pelagic primary productivity increases by a factor 6 from north to south. The southern parts of the sea show a pronounced spring peak, while in the north the spring development is delayed or replaced by a summer maximum. The total increase of the macrofauna biomass is striking, from about 1 g.m–2 (w.wt) in the north to 100 g.m–2 (w.wt) or more in the south. The meiofauna and the zooplankton biomasses show less variability. The meiofauna increases by a factor of 2–4, giving a biomass of about twice that of the macrofauna in the northernmost part. The extremely low salinity of this area causes the exclusion of bivalves (filter-feeders) from the fauna. Available data, pooled with the high metabolic rate of the meiofauna, roughly follow the changes in primary productivity within the Baltic Sea. The changing ratio of macro- to meiofauna, as well as results from intensive studies of the macrobenthic amphipodPontoporeia affinis (Lindström), suggest that the macrofauna is regulated mainly by food limitation and that the benthic and pelagic systems are closely coupled.  相似文献   

13.
The vertical distribution of bacterial abundance and biomass was investigated in relation to algal biomass in ice cores taken from drifting ice floes in two Arctic shelf areas: the Barents Sea and the Laptev Sea. Bacteria were not homogeneously distributed throughout the cores but occurred in dense layers. Different types of distribution patterns were found: either a single maximum occurred inside or at the bottom of the ice floe or maxima were found in different parts of the floes. Bacterial concentrations ranged from 0.4 to 36.7 · 105 cells ml−1. The size spectra of sea-ice bacteria were determined by image analysis. Cell sizes showed considerable variation between the ice floes. In multi-year sea ice, the largest bacteria were observed in the area of an internal chlorophyll a maximum. No specific vertical distribution patterns were found in first-year ice floes. Bacterial biomass for the ice cores ranged from 19.2 to 79.2 mg C m−2, and the ratio of bacterial:ice algal biomass ranged from 0.43 to 10.42. A comparison with data collected from fast ice revealed large differences in terms of cell size, abundance and biomass. Received: 7 September 1995 / Accepted: 10 September 1996  相似文献   

14.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

15.
Hillebrand  Helmut  Sommer  Ulrich 《Hydrobiologia》2000,426(1):185-192
In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed.  相似文献   

16.
We examined the sub-ice algal community in the Chukchi Sea during June 1998 using a remotely operated vehicle (ROV). Ice algae were observed on the under-ice surface at all ten stations (from 70°29′N to 72°26′N; 162°00′W to 153°56′W) and varied in abundance and distribution from small aggregations limited to depressions in the ice to nets, curtains and strands of Melosira. There was no relationship between percent cover of sub-ice algae and physical factors at the kilometer scale, but at the scale of individual ice floes the percent cover of sub-ice algae was positively correlated with distance from the floe edge and negatively correlated with snow depth. A significant positive relationship between the concentration of sediment pigments and percent cover of sub-ice could indicate a coupling between ice algal and benthic systems. Pieces of ice algae that appeared to be Melosira were observed on the seafloor to a depth of over 100 m and cells or spores of obligate ice algal taxa were collected from sediments from 44-m to 1,000-m deep. The large biomass of sub-ice algae observed at many stations in the Chukchi Sea and the presence of ice algae on the seafloor indicates that the distribution and abundance of sub-ice algae needs to be understood if we are to evaluate the role of ice algae in the Arctic marine ecosystem.  相似文献   

17.
Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.  相似文献   

18.
Net growth of ice algae in response to changes in overlying snow cover was studied after manipulating snow thickness on land-fast, Arctic sea ice. Parallel laboratory experiments measured the effect of changing irradiance on growth rate of the ice diatom, Nitzschia frigida. After complete removal of thick snow (≥9 cm), in situ ice algae biomass declined (over 7–12 days), while removal of thin snow layers (4–5 cm), or partial snow removal, increased net algal growth. Ice bottom ablation sometimes followed snow removal, but did not always result in net loss of algae. Similarly, in laboratory experiments, small increases in irradiance increased algal growth rate, while greater light shifts suppressed growth for 3–6 days. However, N. frigida could acclimate to relatively high irradiance (110 μmol photons m2 s−1). The results suggest that algal loss following removal of a thick snow layer was due to the combination of photoinhibition and bottom ablation. The smaller relative increase in irradiance after removal of thin or partial snow layers allowed algae to maintain high specific-growth rates that compensated for loss from physical mechanisms. Thus, the response of ice algae to snow loss depends both on the amount of change in snow depth and algal photophysiology. The complex response of ice algae growth and export loss to frequently changing snow fields may contribute to horizontal and temporal patchiness of ecologically and biogeochemically important variables in sea ice and should be considered in predictions of how climate change will affect Arctic marine ecosystems.  相似文献   

19.
During the late winter and spring of 1994, the influence of sea ice on phytoplankton succession in the water was studied at a coastal station in the northern Baltic Sea. Ice cores were taken together with water samples from the underlying water and analysed for algal composition, chlorophyll a and nutrients. Sediment traps were placed under the ice and near the bottom, and the sedimented material was analysed for algal composition. The highest concentration of ice algae (4.1 mmol C m−2) was found shortly before ice break-up in the middle of April, coincidental with the onset of an under-ice phytoplankton bloom. The ice algae were dominated by the diatoms Chaetoceros wighamii Brightwell, Melosira arctica (Ehrenberg) Dickie and Nitzschia frigida Grunow. Under the ice the diatom Achnanthes taeniata Grunow and the dinoflagellate Peridiniella catenata (Levander) Balech were dominant. Calculations of sinking rates and residence times of the dominant ice algal species in the photic water column indicated that only one ice algal species (Chaetoceros wighamii) had a seeding effect on the water column: this diatom dominated the spring phytoplankton bloom in the water together with Achnanthes taeniata and Peridiniella catenata. Received: 9 May 1997 / Accepted: 15 February 1998  相似文献   

20.
The Archipelago Sea in the northern Baltic has been subjected to large-scale cultural, economic and ecological changes, especially during the last three decades. Environmental threats originate from both basin-wide sources, affecting the whole Baltic Sea, and from local sources, such as nutrient loading from nearby river outflows, intense agriculture, fish farming, ships' traffic, boating, and man's physical impacts on the landscape and seascape. Both the Åland archipelago and the Archipelago Sea have been listed as hot-spots by HELCOM, Baltic Marine Environment Protection Commission, eutrophication being the main threat to the aquatic environment. In this study we review how biological communities have reacted to an increase in man-induced multisource stresses. Changes in plankton, benthic animals, macroalgal assemblages and fish communities have been documented in most parts of the Baltic Sea since the 1970s. What remains to be understood is the importance of these structural changes for the functioning of the Archipelago Sea ecosystem under various levels of human impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号