首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipogenesis in rat and guinea-pig isolated epididymal fat-cells   总被引:14,自引:13,他引:1       下载免费PDF全文
Fat-cells were prepared from rat and guinea-pig epididymal adipose tissue and compared on the basis of the intracellular distributions and activities of enzymes and with respect to their utilization of various U-(14)C-labelled substrates for lipogenesis. 1. Compared with the rat, guinea-pig extramitochondrial enzyme activities differed in that aconitate hydratase, alanine aminotransferase, ATP-citrate lyase, lactate dehydrogenase, NAD-malate dehydrogenase, NADP-malate dehydrogenase and phosphoenolpyruvate carboxykinase activities were appreciably lower, whereas aspartate aminotransferase, glucose 6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase and 6-phosphogluconate dehydrogenase activities were appreciably higher. Mitochondrial activities of citrate synthase, NADP-isocitrate dehydrogenase and pyruvate carboxylase were appreciably lower, whereas mitochondrial activities of aspartate aminotransferase, glutamate dehydrogenase, NAD-malate dehydrogenase and phosphoenolpyruvate carboxykinase were higher in the guinea pig compared with the rat. 2. In general guinea-pig fat-cells incorporated acetate and lactate into fatty acids more readily than rat fat-cells, whereas rat fat-cells incorporated glucose and pyruvate more readily than guinea-pig fat-cells. 3. Acetate stimulated the incorporation of glucose into fatty acids in rat fat-cells, but had no appreciable effect upon this process in guinea-pig fat-cells. Acetate greatly decreased the incorporation of lactate into fatty acids in cells from both species. 4. Lactate/pyruvate ratios produced by incubation of guinea-pig cells with glucose+insulin were very low compared with those found with rat cells under the same conditions. 5. With glucose (+insulin) or with glucose+acetate (+insulin) as substrates guinea-pig cells produced enough NADPH by the hexose monophosphate pathway to satisfy the NADPH requirements of lipogenesis. In rat fat-cells under the same conditions, hexose monophosphate-pathway NADPH provision was not sufficient to meet the requirements of lipogenesis. 6. These results are discussed, particularly in relationship to the disposition of cytosolic reducing equivalents in the cells.  相似文献   

2.
Mechanisms regulating adipose tissue pyruvate dehydrogenase   总被引:21,自引:20,他引:1  
1. Isolated rat epididymal fat-cell mitochondria showed an inverse relationship between ATP content and pyruvate dehydrogenase activity consistent with competitive inhibition of pyruvate dehydrogenase kinase by ADP. At constant ATP concentration pyruvate rapidly activated pyruvate dehydrogenase in fat-cell mitochondria, an observation consistent with inhibition of fat-cell pyruvate dehydrogenase kinase by pyruvate. Pyruvate dehydrogenase in fat-cell mitochondria was also activated by nicotinate (100mum) and by extramitochondrial Na(+) (replacing K(+)) but not by ouabain or insulin. 2. In rat epididymal fat-pads incubated in vitro pyruvate dehydrogenase was activated by addition of insulin in the absence of substrate or in the presence of glucose (10mm) or fructose (10mm). Glucose and fructose activated the dehydrogenase in the absence or in the presence of insulin, and pyruvate also activated in the absence of insulin. It is concluded that extracellular glucose, fructose and pyruvate may activate the dehydrogenase by raising intracellular pyruvate and that insulin may activate the dehydrogenase by some other mechanism. 3. Ouabain (300mum) and medium in which K(+) was replaced by Na(+), activated pyruvate dehydrogenase in epididymal fat-pads. Prostaglandin E(1) (1mug/ml), 5-methylpyrazole-3-carboxylate (10mum) and nicotinate (10mum), which are as effective as insulin as inhibitors of lipolysis and which like insulin lower tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate), did not activate pyruvate dehydrogenase. Higher concentrations of prostaglandin E(1) (10mug/ml) and nicotinate (100mum) produced some activation of the dehydrogenase. 4. It is concluded that the activation of pyruvate dehydrogenase by insulin is not due to the antilipolytic effect of the hormone and that the action of insulin in lowering adipose-cell concentrations of cyclic AMP does not afford an obvious explanation for the effect of the hormone on pyruvate dehydrogenase. The possibility that the effects of insulin, ouabain and K(+)-free medium may be mediated by Ca(2+) is discussed.  相似文献   

3.
1. A method is described for extracting separately mitochondrial and extramitochondrial enzymes from fat-cells prepared by collagenase digestion from rat epididymal fat-pads. The following distribution of enzymes has been observed (with the total activities of the enzymes as units/mg of fat-cell DNA at 25 degrees C given in parenthesis). Exclusively mitochondrial enzymes: glutamate dehydrogenase (1.8), NAD-isocitrate dehydrogenase (0.5), citrate synthase (5.2), pyruvate carboxylase (3.0); exclusively extramitochondrial enzymes: glucose 6-phosphate dehydrogenase (5.8), 6-phosphogluconate dehydrogenase (5.2), NADP-malate dehydrogenase (11.0), ATP-citrate lyase (5.1); enzymes present in both mitochondrial and extramitochondrial compartments: NADP-isocitrate dehydrogenase (3.7), NAD-malate dehydrogenase (330), aconitate hydratase (1.1), carnitine acetyltransferase (0.4), acetyl-CoA synthetase (1.0), aspartate aminotransferase (1.7), alanine aminotransferase (6.1). The mean DNA content of eight preparations of fat-cells was 109mug/g dry weight of cells. 2. Mitochondria showing respiratory control ratios of 3-6 with pyruvate, about 3 with succinate and P/O ratios of approaching 3 and 2 respectively have been isolated from fat-cells. From studies of rates of oxygen uptake and of swelling in iso-osmotic solutions of ammonium salts, it is concluded that fat-cell mitochondria are permeable to the monocarboxylic acids, pyruvate and acetate; that in the presence of phosphate they are permeable to malate and succinate and to a lesser extent oxaloacetate but not fumarate; and that in the presence of both malate and phosphate they are permeable to citrate, isocitrate and 2-oxoglutarate. In addition, isolated fat-cell mitochondria have been found to oxidize acetyl l-carnitine and, slowly, l-glycerol 3-phosphate. 3. It is concluded that the major means of transport of acetyl units into the cytoplasm for fatty acid synthesis is as citrate. Extensive transport as glutamate, 2-oxoglutarate and isocitrate, as acetate and as acetyl l-carnitine appears to be ruled out by the low activities of mitochondrial aconitate hydratase, mitochondrial acetyl-CoA hydrolyase and carnitine acetyltransferase respectively. Pathways whereby oxaloacetate generated in the cytoplasm during fatty acid synthesis by ATP-citrate lyase may be returned to mitochondria for further citrate synthesis are discussed. 4. It is also concluded that fat-cells contain pathways that will allow the excess of reducing power formed in the cytoplasm when adipose tissue is incubated in glucose and insulin to be transferred to mitochondria as l-glycerol 3-phosphate or malate. When adipose tissue is incubated in pyruvate alone, reducing power for fatty acid, l-glycerol 3-phosphate and lactate formation may be transferred to the cytoplasm as citrate and malate.  相似文献   

4.
Hormone-stimulated lipolysis in adipose tissue was inhibited by fluoroacetate and there was a concomitant decrease in both the basal and hormone-stimulated cyclic AMP levels. Adenylate cyclase (EC 4.6.1.1) activity in membrane preparations was inhibited by fluoroacetate. There was no influence of fluoroacetate on the low Km cyclic AMP phosphodiesterase (EC 3.1.4.17) activity. The rate of glucose conversion to fatty acids was increased when adipose tissue was incubated in the presence of fluoroacetate. The outputs of pyruvate and lactate into the incubation medium were decreased at this time, suggesting decreased tissue pyruvate levels and a site of activation of lipogenesis distal to pyruvate formation. Pyruvate dehydrogenase (EC 1.2.4.1) activity was increased twofold in adipose tissue incubated in the presence of fluoroacetate. This was attributed to a fluoroacetate-induced inhibition of pyruvate dehydrogenase kinase, the enzyme responsible for inactivating the pyruvate dehydrogenase complex. Glucose transport was increased to a small but significant degree by fluoroacetate. In addition, both the tissue content of citrate and its release into the incubation medium were increased, suggesting that fluoroacetate resulted in an inhibition of aconitase (EC 4.2.1.3). The tissue ATP content was unchanged. Because the antilipolytic and lipogenic effects of fluoroacetate parallel those of insulin, they may share a common mechanism.  相似文献   

5.
Insulin was found to double the rate of incorporation of H14CO3- into protein by segments of rat epididymal adipose tissue provided the incubation medium contained a suitable energy substrate such as fructose. Overall protein synthesis was increased by insulin to a lesser extent, one-third as measured by tritiated water indicating that insulin also increased CO2 fixation into amino acids. The latter could be demonstrated only when the tissue amino acid pools were expanded by the addition of aspartate to the incubation medium. The pattern of labeling observed in the amino acids indicated that CO2 fixation occurred primarily at the pyruvate carboxylase step. Addition of pyruvate to the incubation medium also increased CO2 fixation and this effect was not additive with that of insulin, suggesting that insulin acted by increasing the availability of pyruvate to the carboxylase. No change in carboxylase activity could be measured. Mitochondria isolated from tissue exposed to insulin retained a higher capacity to fix CO2 into acid-soluble products provided they were not freeze-thawed or sonicated. Uptake of pyruvate by mitochondria incubated 1 min at 2 degrees C or 5 s at 15 degrees C was doubled by prior insulin treatment of the tissue. It is concluded that insulin increases the flux through pyruvate carboxylase in adipose tissue in part by increasing the transport of pyruvate through the inner mitochondrial membrane.  相似文献   

6.
Fatty acid synthesis via the citrate cleavage pathway requires the continual replenishment of oxaloacetate within the mitochondria, probably by carboxylation of pyruvate. Malic enzyme, although present in adipose tissue, is completely localized in the cytoplasm and has insufficient activity to support lipogenesis. Pyruvate carboxylase was found to be active in both the mitochondria and cytoplasm of epididymal adipose tissue cells; it was dependent on both ATP and biotin. Alteractions in dietary conditions induced no significant changes in mitochondrial pyruvate carboxylase activity, but the soluble activity was depressed in fat-fed animals. The possible importance of the soluble activity in lipogenesis lies in its participation in a soluble malate transhydrogenation cycle with NAD malate dehydrogenase and malic enzyme, whereby a continual supply of NADPH is produced. Consequently, the pyruvate carboxylase in adipose tissue both generates mitochondrial oxaloacetate for the citrate cleavage pathway and supplies soluble NADPH for the conversion of acetyl-CoA to fatty acid.  相似文献   

7.
Protein kinase activity in high-speed supernatant fractions prepared from rat epididymal adipose tissue previously incubated in the absence or presence of insulin was investigated by following the incorporation of 32P from [gamma-32P]ATP into phosphoproteins separated by sodium dodecyl sulphate/polyacrylamide-gel electro-phoresis. Incorporation of 32P into several endogenous proteins in the supernatant fractions from insulin-treated tissue was significantly increased. These included acetyl-CoA carboxylase and ATP citrate lyase (which exhibit increased phosphorylation within fat-cells exposed to insulin), together with two unknown proteins of subunit Mr 78000 and 43000. The protein kinase activity increased by insulin was distinct from cyclic AMP-dependent protein kinase, was not dependent on Ca2+ and was not appreciably affected by dialysis or gel filtration. The rate of phosphorylation of added purified fat-cell acetyl-CoA carboxylase and ATP citrate lyase was also increased by 60-90% in high-speed-supernatant fractions prepared from insulin-treated tissue. No evidence for any persistent changes in phosphoprotein phosphatase activity was found. It is concluded that insulin action on acetyl-CoA carboxylase, ATP citrate lyase and other intracellular proteins exhibiting increased phosphorylation involves an increase in cyclic AMP-independent protein kinase activity in the cytoplasm. The possibility that the increase reflects translocation from the plasma membrane, perhaps after phosphorylation by the protein tyrosine kinase associated with insulin receptors, is discussed.  相似文献   

8.
Metabolism of pyruvate and malate by isolated fat-cell mitochondria   总被引:7,自引:7,他引:0       下载免费PDF全文
1. Metabolism of pyruvate and malate by isolated fat-cell mitochondria incubated in the presence of ADP and phosphate has been studied by measuring rates of pyruvate uptake, malate utilization or production, citrate production and oxygen consumption. From these measurements calculations of the flow rates through pyruvate carboxylase, pyruvate dehydrogenase and citrate cycle have been made under various conditions. 2. In the presence of bicarbonate, pyruvate was largely converted into citrate and malate and only about 10% was oxidized by the citrate cycle; citrate and malate outputs were linear after lag periods of 6-9min and 3min respectively, and no other end products of pyruvate metabolism were detected. On the further addition of malate or hydroxymalonate, the lag in the rate of citrate output was less marked but no net malate disappearance was detected. If, however, bicarbonate was omitted then net malate uptake was observed. Addition of butyl malonate was found to greatly inhibit the metabolism of pyruvate to citrate and malate in the presence of bicarbonate. 3. These results are in agreement with earlier conclusions that in adipose tissue acetyl units for fatty acid synthesis are transferred to the cytoplasm as citrate and that this transfer requires malate presumably for counter transport. They also support the view that oxaloacetate for citrate synthesis is preferentially formed from pyruvate through pyruvate carboxylase rather than malate through malate dehydrogenase and that the mitochondrial metabolism of citrate in fat-cells is restricted. The possible consequences of these conclusions are discussed. 4. Studies on the effects of additions of adenine nucleotides to pyruvate metabolism by isolated fat-cell mitochondria are consistent with inhibition of pyruvate carboxylase in the presence of ADP and pyruvate dehydrogenase in the presence of ATP.  相似文献   

9.
1. Adipose tissues from rats fed a balanced diet were incubated in the presence of glucose (20mm) with the following additions: insulin, anti-insulin serum, insulin+acetate, insulin+pyruvate, insulin+lactate, insulin+phenazine methosulphate, insulin+oleate+albumin, insulin+adrenaline+albumin, insulin+6-N-2'-O-dibutyryl 3':5'-cyclic AMP+albumin. 2. Measurements were made of the whole tissue concentrations of adenine nucleotides, hexose phosphates, triose phosphates, glycerol 1-phosphate, 3 phosphoglycerate, 6-phosphogluconate, long-chain fatty acyl-CoA, acid-soluble CoA, citrate, isocitrate, malate and 2-oxoglutarate, and of the release into the incubation medium of lactate, pyruvate and glycerol after 1h of incubation. 3. Fluxes of [(14)C]glucose carbon through the major pathways of glucose metabolism were calculated from the yields of (14)C in various products after 2h of incubation. Fluxes of [(14)C]acetate, [(14)C]pyruvate or [(14)C]lactate carbon in the presence of glucose were also determined. 4. Measurements were also made of the whole-tissue concentrations of metabolites in tissues taken directly from Nembutal-anaesthetized rats. 5. Whole tissue mass-action ratios for phosphofructokinase, phosphoglucose isomerase and the combined (aldolasextriose phosphate isomerase) reaction were similar in vivo and in vitro. The reactants of phosphofructokinase appeared to be far from mass-action equilibrium. In vitro, the reactants of hexokinase also appeared to be far from mass-action equilibrium. 6. Correlation of observed changes in glycolytic flux with changes in fructose 6-phosphate concentration suggested that phosphofructokinase may show regulatory behaviour. The enzyme appeared to be activated in the presence of oleate or adrenaline and to be inhibited in the presence of lactate or pyruvate. 7. Evidence is presented that the reactants of lactate dehydrogenase and glycerol 1-phosphate dehydrogenase may be near to mass-action equilibrium in the cytoplasm. 8. No satisfactory correlations could be drawn between the whole-tissue concentrations of long-chain fatty acyl-CoA, citrate and glycerol 1-phosphate and the observed rates of triglyceride and fatty acid synthesis. Under the conditions employed, the concentration of glycerol 1-phosphate appeared to depend mainly on the cytoplasmic [NAD(+)]/[NADH] ratios. 9. Calculated hexose monophosphate pathway flux rates roughly correlated with fatty acid synthesis rates and with whole tissue [6-phosphogluconate]/[glucose 6-phosphate] ratios. The relative rates of production of NADPH for fatty acid synthesis by the hexose monophosphate pathway and by the ;malic enzyme' are discussed. It is suggested that all NADH produced in the cytoplasm may be used in that compartment for reductive synthesis of fatty acids, lactate or glycerol 1-phosphate.  相似文献   

10.
Glucagon and N,(6)O(2)-dibutyryl cyclic adenosine 3',5'-cyclic monophosphate (Bt(2)cAMP) inhibit fatty acid synthesis from acetate by more than 90% and prevent citrate formation in chick hepatocytes metabolizing glucose. With substrates that enter glycolysis at or below triose-phosphates, e.g., fructose, lactate, or pyruvate, Bt(2)cAMP has no effect on the citrate level and its inhibitory effect on fatty acid synthesis is substantially reversed. Because acetyl-CoA carboxylase requires a tricarboxylic acid activator for activity, it is proposed that regulation of fatty acid synthesis by Bt(2)cAMP is due, in part, to changes in the citrate level. Reduced citrate formation appears to result from a cAMP-induced inhibition of glycolysis. Bt(2)cAMP inhibits (14)CO(2) production from [1-(14)C]-, [6-(14)C]-, and [U-(14)C]glucose and has little effect on (14)CO(2) formation from [1-(14)C]- or [2-(14)C]pyruvate or from [1-(14)C]fructose. [(14)C]Lactate formation from glucose is depressed 50% by Bt(2)cAMP. In the presence of an inhibitor of mitochondrial pyruvate transport lactate accumulation is enhanced, but continues to be lowered 50% by Bt(2)cAMP. The activity of phosphofructokinase is greatly decreased in Bt(2)cAMP-treated cells while the activities of pyruvate kinase and acetyl-CoA carboxylase are unaffected. It appears that decreased glycolytic flux and decreased citrate formation result from depressed phosphofructokinase activity. Fatty acid synthesis from [(14)C]acetate is partially inhibited by Bt(2)cAMP in the presence of fructose, lactate, and pyruvate despite a high citrate level. Incorporation of [(14)C]fructose, [(14)C]pyruvate, or [(14)C]lactate into fatty acids is similarly depressed by Bt(2)cAMP. Synthesis of cholesterol from [(14)C]acetate or [2-(14)C]pyruvate is unaffected by Bt(2)cAMP. These results implicate a second site of inhibition of fatty acid synthesis by Bt(2)cAMP that involves the utilization, but not the production, of cytoplasmic acetyl-CoA.-Clarke, S. D., P. A. Watkins, and M. D. Lane. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation.  相似文献   

11.
1. Epididymal adipose tissues obtained from rats that had been previously starved, starved and refed a high fat diet for 72h, starved and refed bread for 144h or fed a normal diet were incubated in the presence of insulin+glucose or insulin+glucose+acetate. 2. Measurements were made of the whole-tissue concentrations of hexose phosphates, triose phosphates, glycerol 1-phosphate, 3-phosphoglycerate, 6-phosphogluconate, adenine nucleotides, acid-soluble CoA, long-chain fatty acyl-CoA, malate and citrate after 1h of incubation. The release of lactate, pyruvate and glycerol into the incubation medium during this period was also determined. 3. The rates of metabolism of glucose in the hexose monophosphate pathway, the glycolytic pathway, the citric acid cycle and into glyceride glycerol, fatty acids and lactate+pyruvate were also determined over a 2h period in similarly treated tissues. The metabolism of acetate to CO(2) and fatty acids in the presence of glucose was also measured. 4. The activities of acetyl-CoA carboxylase, fatty acid synthetase and isocitrate dehydrogenase were determined in adipose tissues from starved, starved and fat-refed, and alloxan-diabetic animals and also in tissues from animals that had been starved and refed bread for up to 96h. Changes in these activities were compared with the ability of similar tissues to incorporate [(14)C]glucose into fatty acids in vitro. 5. The activities of acetyl-CoA carboxylase and fatty acid synthetase roughly paralleled the ability of tissues to incorporate glucose into fatty acids. 6. Rates of triglyceride synthesis and fatty acid synthesis could not be correlated with tissue concentrations of long-chain fatty acyl-CoA, citrate or glycerol 1-phosphate. In some cases changes in phosphofructokinase flux rates could be correlated with changes in citrate concentration. 7. The main lesion in fatty acid synthesis in tissues from starved, starved and fat-refed, and alloxan-diabetic rats appeared to reside at the level of pyruvate utilization and to be related to the rate of endogenous lipolysis. 8. It is suggested that pyruvate utilization by the tissue may be regulated by the metabolism of fatty acids within the tissue. The significance of this in directing glucose utilization away from fatty acid synthesis and into glyceride-glycerol synthesis is discussed.  相似文献   

12.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 2 1/2-fold 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

13.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

14.
1. A new rapid method for the purification of fat-cell acetyl-CoA carboxylase is described; the key step is sedimentation after specific polymerization by citrate. 2. Incubation of epididymal fat-pads or isolated fat-cells with insulin or adrenaline leads to a rapid increase or decrease respectively in the activity of acetyl-CoA carboxylase measured in fresh tissue extracts. The persistence of the effect of insulin through high dilution of tissue extracts and through purification involving precipitation with (NH4)2SO4 suggests that the enzyme undergoes a covalent modification after exposure of intact tissue to the hormone. The opposed effects of insulin and adrenaline are not adequately explained through modification of a common site on acetyl-CoA carboxylase, since these hormones bring about qualitatively different alterations in the kinetic properties of the enzyme measured in tissue extracts. 3. The state of phosphorylation of acetyl-CoA carboxylase within intact fat-cells exposed to insulin was determined, and results indicate a small but consistent rise in overall phosphorylation of the Mr-230000 subunit after insulin treatment. 4. Acetyl-CoA carboxylase from fat-cells previously incubated in medium containing [32P]phosphate was purified by immunoprecipitation and then digested with performic acid and trypsin before separation of the released phosphopeptides by two-dimensional analysis. Results obtained show that the exposure of fat-cells to insulin leads to a 5-fold increase in incorporation of 32P into a peptide which is different from those most markedly affected after exposure of fat-cells to adrenaline. 5. These studies indicate that the activation of acetyl-CoA carboxylase in cells incubated with insulin is brought about by the increased phosphorylation of a specific site on the enzyme, possibly catalysed by the membrane-associated cyclic AMP-independent protein kinase described by Brownsey, Belsham & Denton [(1981) FEBS Lett. 124, 145-150].  相似文献   

15.
Lipogenesis in rabbit isolated fat-cells   总被引:2,自引:2,他引:0  
1. Fat-cells isolated from rabbit perirenal adipose tissue were incubated with the following U-(14)C-labelled substrates: 5mm-glucose (+insulin), 5mm-pyruvate, 5mm-lactate, 5mm-glucose+5mm-acetate (+insulin), and the relative rates of incorporation of these substrates into glyceride fatty acids determined. In general total rates of fatty acid synthesis were similar whatever substrate was supplied to the cells. 2. Rabbit fat-cells incorporated [U-(14)C]acetate into fatty acids and CO(2) as well in the absence of glucose as in the presence of this substrate. 3. The disposition of the utilization of glucose-derived carbon through various metabolic pathways was determined. 4. Extramitochondrial and mitochondrial activities were determined for 11 enzymes. The cells contained a very low activity of pyruvate carboxylase, undetectable NADP-malate dehydrogenase activity and a high mitochondrial phosphoenolpyruvate carboxylase activity. 5. Various rabbit fat-cell metabolic parameters based on the measurement of (14)C incorporation and enzyme activity were compared with the same parameters previously measured in rat and guinea-pig fat-cells. In general guinea pig occupied a position between rat and rabbit with respect to these parameters. 6. The profiles of substrate incorporation into fatty acids and of relative enzyme activities in rabbit fat-cells indicated that the operation of a ;citrate-cleavage' pathway may not be obligatory for the supply of lipogenic acetyl units.  相似文献   

16.
Plasma insulin concentrations in fed rats were altered acutely by administration of glucose or anti-insulin serum. Rates of fatty acid synthesis in adipose tissue and liver were estimated from the incorporation of 3H from 3H2O. In the adipose tissue dehydrogenase and acetyl-CoA carboxylase were evident. In liver, although changes in rates of fatty acid synthesis were found, the initial activity of pyruvate dehydrogenase did not alter, but small parallel changes in acetyl-CoA carboxylase activity were observed.  相似文献   

17.
Intact rat epididymal fat-cells were incubated with 32Pi and the intracellular proteins separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. One of the phosphorylated proteins has the same RF value as [14C]biotin-labelled acetyl-CoA carboxylase purified from fat-cells and is specifically precipitated after incubation with antiserum raised against acetyl-CoA carboxylase. No significant changes in the extent of phosphorylation of acetyl-CoA carboxylase were detected after exposure of the cells to insulin.  相似文献   

18.
1. The mechanism by which insulin activates pyruvate dehydrogenase in rat epididymal adipose tissue was further investigated. 2. When crude extracts, prepared from tissue segments previously exposed to insulin (2m-i.u/ml) for 2min, were supplemented with Mg-2+, Ca-2+, glucose and hexokinase and incubated at 30 degrees C, they displayed an enhanced rate of increase in pyruvate dehydrogenase activity compared with control extracts. 3. When similar extracts were instead supplemented with fluoride, ADP, creatine phosphate and creatine kinase, the rate of decrease in pyruvate dehydrogenase activity observed during incubation at 30 degrees C was unaffected by insulin treatment. 4. It is suggested that insulin increases the fraction of pyruvate dehydrogenase present in the tissue in the active dephospho form by increasing the activity of pyruvate dehydrogenase phosphate phosphatase.  相似文献   

19.
1. When rat isolated fat-cells were incubated with fructose and palmitate, insulin significantly stimulated glyceride synthesis as measured by either [14C]fructose incorporation into the glycerol moiety or of [3H]palmitate incorporation into the acyl moiety of tissue glycerides. Under certain conditions the effect of insulin on glyceride synthesis was greater than the effect of insulin on fructose uptake. 2. In the presence of palmitate, insulin slightly stimulated (a) [14C]pyruvate incorporation into glyceride glycerol of fat-cells and (b) 3H2O incorporation into glyceride glycerol of incubated fat-pads. 3. At low extracellular total concentrations of fatty acids (in the presence of albumin), insulin stimulated [14C]fructose, [14C]pyruvate and 3H2O incorporation into fat-cell fatty acids. Increasing the extracellular fatty acid concentration greatly inhibited fatty acid synthesis from these precursors and also greatly decreased the extent of apparent stimulation of fatty acid synthesis by insulin. 4. These results are discussed in relation to the suggestion [A.P. Halestrap & R.M.Denton (1974) Biochem. J. 142, 365-377] that the tissue may contain a specific acyl-binding protein which is subject to regulation. It is suggested that an insulin-sensitive enzyme component of the glyceride-synthesis process may play such a role.  相似文献   

20.
1. Acetyl-CoA carboxylase activity was measured in extracts of rat epididymal fat-pads either on preparation of the extracts (initial activity) or after incubation of the extracts with citrate (total activity). In the presence of glucose or fructose, brief exposure of pads to insulin increased the initial activity of acetyl-CoA carboxylase; no increase occurred in the absence of substrate. Adrenaline in the presence of glucose and insulin decreased the initial activity. None of these treatments led to a substantial change in the total activity of acetyl-CoA carboxylase. A large decrease in the initial activity of acetyl-CoA carboxylase also occurred with fat-pads obtained from rats that had been starved for 36h although the total activity was little changed by this treatment. 2. Conditions of high-speed centrifugation were found which appear to permit the separation of the polymeric and protomeric forms of the enzyme in fat-pad extracts. After the exposure of the fat-pads to insulin (in the presence of glucose), the proportion of the enzyme in the polymeric form was increased, whereas exposure to adrenaline (in the presence of glucose and insulin) led to a decrease in enzyme activity. 3. These changes are consistent with a role of citrate (as activator) or fatty acyl-CoA thioesters (as inhibitors) in the regulation of the enzyme by insulin and adrenaline; no evidence that the effects of these hormones involve phosphorylation or dephosphorylation of the enzyme could be found. 4. Changes in the whole tissue concentration of citrate and fatty acyl-CoA thioesters were compared with changes in the initial activity of acetyl-CoA carboxylase under a variety of conditions of incubation. No correlation between the citrate concentration and the initial enzyme activity was evident under any condition studied. Except in fat-pads which were exposed to insulin there was little inverse correlation between the concentration in the tissue of fatty acyl-CoA thioesters and the initial activity of acetyl-CoA carboxylase. 5. It is suggested that changes in the concentration of free fatty acyl-CoA thioesters (which may not be reflected in whole tissue concentrations of these metabolites) may be important in the regulation of the activity of acetyl-CoA carboxylase. The possibility is discussed that the concentration of free fatty acyl-CoA thioesters may be controlled by binding to a specific protein with properties similar to albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号