首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
马尾松自疏规律的人工神经网络模型研究   总被引:5,自引:0,他引:5  
森林自然稀疏规律的研究已经有了很大发展,并提出了许多经验的或理论的表达式。本研究介绍了人工神经网络方法,首次建立了马尾松人工林自然稀疏规律的三层前馈反向传播神经网络模型。仿真结果表明,人工神经网络模型能很好地符合实际的观测资料,具有良好的使用价值,从而丰富了该领域的研究方法。  相似文献   

2.
人工神经网络在发酵工业中的应用   总被引:2,自引:0,他引:2  
人工神经网络技术具有很强的非线性映射能力,用于系统的非线性建模,具有无可比拟的优势,广泛应用于发酵过程中培养基的优化和系统建模与控制方面,本主要介绍了人工神经网络的基本原理与使用方法,以及BP神经网络在非线性函数逼近的优点,详细介绍了其在发酵培养基优化,连续搅拌反应器神经网络估计,分批发酵及补料分批发酵过程建模与控制优化中的应用实例。  相似文献   

3.
BP-MSM混合算法及其在森林自疏规律研究中的应用   总被引:14,自引:2,他引:14  
森林自然稀疏机制一般是非线性的、动态的.人工神经网络具有逼近任意非线性映射的特性.本文阐述了人工神经网络模拟森林自疏机制的可行性和不足之处,并提出了基于改进单纯形法的神经网络模型(BP-MSM混合算法)的基本原理和算法,结合山杨天然林和杉木人工林自疏实例说明了其应用.森林自疏实例应用结果表明,BP-MSM混合算法模拟森林自然稀疏机制是理想的,模拟精度较高,从而继承和发展了人工神经网络方法与理论,丰富了森林自然稀疏规律研究方法.  相似文献   

4.
BP神经网络在农产品生产与检测中的应用   总被引:2,自引:1,他引:2  
人工神经网络是人工智能领域中发展迅速的信息处理技术之一,充分发挥人工神经网络的技术优势,是在农业领域内实现生产劳动自动化的重要途径.本文对BP网络模型及其算法进行了分析研究,从农产品的外观评判、生产预测建模和分类分级鉴定等方面综述了国内外最新研究进展,并展望了今后的应用前景。  相似文献   

5.
上海市景观格局的人工神经网络(ANN)模型   总被引:2,自引:0,他引:2  
张利权  甄彧 《生态学报》2005,25(5):958-964
定量分析城市景观的空间格局,深入研究景观格局的形成机制,将有助于理解城市景观的格局与过程,分析城市化的社会、经济和生态学后果以及制定更有效的景观管理策略。研究以城市景观生态学途径,应用基于GIS的景观格局分析与人工神经网络(ANN)相结合的方法定量分析上海市城市景观格局(1994年)及其变化规律,建立了能够较好地模拟上海市景观格局对居住区用地、道路密度、人口密度、城市发展历史与黄浦江等自然、社会、经济因素响应的人工神经网络。结果表明,人工神经网络方法适于研究城市化驱动因素与城市景观格局的非线性对应关系,为景观格局形成机制和景观空间结构与生态学过程相互关系的深入研究提供了一条有效、实用的研究途径。  相似文献   

6.
本文研究了人工神经网络BP学习算法中动量因子、隐节点数、学习速率、激活因子等对网络学习速度有影响的几个因素,并且找出了最佳值.  相似文献   

7.
补料调控策略是基因工程菌实现高密度培养的关键技术之一。本文结合大量实例,着重介绍了基因工程菌高密度培养补料控制策略在国内外的发展现状及发展趋势。并探讨了模式识别技术、人工神经网络、PSO优化算法等在补料策略及其控制系统中的应用情况及发展趋势。  相似文献   

8.
森林生物量是林业生产经营和森林资源监测的重要指标,为探索高效低偏的单木生物量估测方法,引入人工神经网络.本研究采用黑龙江省东折棱河林场的101株长白落叶松地上生物量数据,基于不同变量(胸径、树高、冠幅)组合建立了4个聚合模型体系(AMS),采用加权回归消除模型的异方差.然后,基于最优的变量组合建立人工神经网络(ANN)...  相似文献   

9.
桂凌  张征  王举位  闫国振 《生态科学》2011,30(3):268-272
BP人工神经网络技术在环境评价领域中已经得到越来越广泛的运用,将该法引入到陕蒙砒砂岩区沙棘生态功能综合评价的研究中,以沙棘生态功能评价指标标准值作为样本输入,综合评价级别作为网络输出,建立了一个含有4个输入神经元节点、6个隐含神经元节点和1个输出神经元节点的BP人工神经网络等级模型。将目标年(2008年)各评价指标实际数据作为输入,得到输出值是0.44,大于Ⅱ级标准,研究结果表明:砒砂岩区种植十年沙棘后,其生态效益很好,对砒砂岩地区的生态环境改善作用显著。BP神经网络的评价结果与较成熟的AHP-模糊综合评价结果一致,证明将BP人工神经网络模型用于沙棘生态功能评价是可行的,且评价结论客观。  相似文献   

10.
桤柏混交林密度变化规律的人工神经网络模型研究   总被引:9,自引:1,他引:8  
本文应用人工神经网络方法建立了桤柏混交林密度变化的神经网络模型,并与传统模型进行了比较,仿真结果表明,人工神经网络模型可适用于桤柏混交林密度变化规律描述,且优于传统模型,从而丰富和发展了森林稀疏规律理论。  相似文献   

11.
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.  相似文献   

12.
D Koruga 《Bio Systems》1990,23(4):297-303
We describe a new approach in the research of neural networks. This research is based on molecular networks in the neuron. If we use molecular networks as a sub-neuron factor of neural networks, it is a more realistic approach than today's concepts in this new computer technology field, because the artificial neural activity profile is similar to the profile of the action potential in the natural neuron. The molecular networks approach can be used in three technologies: neurocomputer, neurochip and molecular chip. This means that molecular networks open new fields of science and engineering called molecular-like machines and molecular machines.  相似文献   

13.

Background  

Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis  相似文献   

14.
15.
Accurate prediction of species distributions based on sampling and environmental data is essential for further scientific analysis, such as stock assessment, detection of abundance fluctuation due to climate change or overexploitation, and to underpin management and legislation processes. The evolution of computer science and statistics has allowed the development of sophisticated and well-established modelling techniques as well as a variety of promising innovative approaches for modelling species distribution. The appropriate selection of modelling approach is crucial to the quality of predictions about species distribution. In this study, modelling techniques based on different approaches are compared and evaluated in relation to their predictive performance, utilizing fish density acoustic data. Generalized additive models and mixed models amongst the regression models, associative neural networks (ANNs) and artificial neural networks ensemble amongst the artificial neural networks and ordinary kriging amongst the geostatistical techniques are applied and evaluated. A verification dataset is used for estimating the predictive performance of these models. A combination of outputs from the different models is applied for prediction optimization to exploit the ability of each model to explain certain aspects of variation in species acoustic density. Neural networks and especially ANNs appear to provide more accurate results in fitting the training dataset while generalized additive models appear more flexible in predicting the verification dataset. The efficiency of each technique in relation to certain sampling and output strategies is also discussed.  相似文献   

16.
Almost all artificial neural networks are by default fully connected, which often implies a high redundancy and complexity. Little research has been devoted to the study of partially connected neural networks, despite its potential advantages like reduced training and recall time, improved generalization capabilities, reduced hardware requirements, as well as being a step closer to biological reality. This publication presents an extensive survey of the various kinds of partially connected neural networks, clustered into a clear framework, followed by a detailed comparative discussion.  相似文献   

17.
Classification methods used in machine learning (e.g., artificial neural networks, decision trees, and k-nearest neighbor clustering) are rarely used with population genetic data. We compare different nonparametric machine learning techniques with parametric likelihood estimations commonly employed in population genetics for purposes of assigning individuals to their population of origin ("assignment tests"). Classifier accuracy was compared across simulated data sets representing different levels of population differentiation (low and high F(ST)), number of loci surveyed (5 and 10), and allelic diversity (average of three or eight alleles per locus). Empirical data for the lake trout (Salvelinus namaycush) exhibiting levels of population differentiation comparable to those used in simulations were examined to further evaluate and compare classification methods. Classification error rates associated with artificial neural networks and likelihood estimators were lower for simulated data sets compared to k-nearest neighbor and decision tree classifiers over the entire range of parameters considered. Artificial neural networks only marginally outperformed the likelihood method for simulated data (0-2.8% lower error rates). The relative performance of each machine learning classifier improved relative likelihood estimators for empirical data sets, suggesting an ability to "learn" and utilize properties of empirical genotypic arrays intrinsic to each population. Likelihood-based estimation methods provide a more accessible option for reliable assignment of individuals to the population of origin due to the intricacies in development and evaluation of artificial neural networks.  相似文献   

18.
We model the functioning of different wiring schemes in visual projections using artificial neural networks and so speculate on selective factors underlying taxonomic variation in neural architecture. We model the high connective overlap of vertebrates (where networks have a dense mesh of connections) and the less overlapping, more modular architecture of arthropods. We also consider natural variation in these basic wiring schemes. Generally, arthropod networks are as efficient or more efficient in functioning compared to vertebrate networks. They do not show the confusion effect (decreasing targeting accuracy with increasing input group size), and they train as well or better. Arthropod networks are, however, generally poorer at reconstructing novel inputs. The ability of vertebrate networks to effectively process novel stimuli could promote behavioral sophistication and drive the evolution of vertebrate wiring schemes. Vertebrate networks with less connective overlap have, surprisingly, similar or superior properties compared to those with high connective overlap. Thus, the partial connective overlap seen in real vertebrate visual projections may be an optimal, evolved solution. Arthropod networks with and without whole-cell neural connections within neural layers have similar properties. This indicates that neural connections mediated by offshoots of single cells (dendrites) may be fundamental to generating the confusion effect.  相似文献   

19.
BP人工神经网络在光谱定量预测中的应用   总被引:1,自引:0,他引:1  
人工神经网络是模仿大脑神经元网络结构和功能而建立的一种信息处理系统,广泛的应用于各种波谱数据处理。误差反向传播多层前馈式网络(back-propagation network,简称BP网络)应用最广,发展最为迅速。将BP神经网络用于紫外-可见吸收光谱和拉曼光谱数据的定量分析和预测,与原文的一元线性回归模型数据处理方法相比,获得了比较满意的预测结果,预测精度有显著提高。这为相关的光谱分析和数据处理提供了一种更有效、更精确的方法。  相似文献   

20.
The aim of this study was to present a new training algorithm using artificial neural networks called multi-objective least absolute shrinkage and selection operator (MOBJ-LASSO) applied to the classification of dynamic gait patterns. The movement pattern is identified by 20 characteristics from the three components of the ground reaction force which are used as input information for the neural networks in gender-specific gait classification. The classification performance between MOBJ-LASSO (97.4%) and multi-objective algorithm (MOBJ) (97.1%) is similar, but the MOBJ-LASSO algorithm achieved more improved results than the MOBJ because it is able to eliminate the inputs and automatically select the parameters of the neural network. Thus, it is an effective tool for data mining using neural networks. From 20 inputs used for training, MOBJ-LASSO selected the first and second peaks of the vertical force and the force peak in the antero-posterior direction as the variables that classify the gait patterns of the different genders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号