首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The p-fluorophenylalanine (FPA) resistance of acc phe, which has previously been shown (Brooks et al., 1972) to be a try-1 mutant, has been further investigated. When incubated in the absence of tyrosine, acc phe and also tyr-1 auxotrophs show a gradual increase in free phenylalanine in the cell but a sharp decrease in FPA incorporation into protein. The decrease in FPA incorporation is apparently due to the excess phenylalanine in the mutants, since the normal endogenous pool component in wild type and also in the mutants incubated on tyrosine does not appear to compete with FPA for incorporation. The rate of FPA incorporation into protein in acc phe remains at 10–15% of the wild-type rate even when the ratio of free FPA to excess phenylalanine in the cell is high as 8:1. If wild type is supplied with exogenous phenylalanine and FPA simultaneously, phenylalanine is preferentially incorporated into protein but, in contrast to the mutant, the rate of FPA incorporation increases as the ratio of free FPA to phenylalanine increases. On the basis of differences in competition with FPA and in susceptibilities to mild extraction procedures, it is proposed that phenylalanine can be located in at least three compartments in Neurospora: a small constant-size endogenous pool always seen in wild type; an expandable exogenous pool; and a protein synthesis pool which is preferentially populated by endogenous phenylalanine but can be entered by exogenous molecules when biosynthesis is regulated. In acc phe, where phenylalanine biosynthesis is not regulated, the excess phenylalanine is located primarily in the protein synthesis pool where it only has to compete with a small FPA component and is thereby preferentially incorporated into protein in this mutant.This work was supported, in part, by an Atomic Energy Commission grant to the Institute of Molecular Biophysics, The Florida State University, and by the Genetics Training Grant, funded by the National Institutes of Health. It contains, in part, data from the doctoral thesis of the senior author, who was supported by a Florida State University Nuclear Fellowship and by a Public Health Service Fellowship.  相似文献   

2.
Two mutants which require phenylalanine for normal growth and which show no prephenate dehydratase activity in vitro have been found to accumulate and excrete phenylalanine when incubated on minimal medium or grown on low concentrations of phenylalanine. The high levels of phenylalanine accumulated in these mutants apparently cannot be used for protein synthesis or for the regulation of the biosynthetic enzymes in the aromatic pathway. Mutant mycelia grown in high phenylalanine maintain a much lower level of free phenylalanine in the cells than do those grown on low phenylalanine or those which eventually grow on minimal. If all the phenylalanine required for the protein in a 3-day mycelial pad is supplied, little or no phenylalanine can be found in the medium after 3 days: if only a fraction of the total protein phenylalanine is supplied, the concentration of phenylalanine in the medium after 3 days is actually higher than the initial concentration. It is proposed that the mutation in these organisms has resulted in abnormal compartmentation of the phenylalanine produced so it cannot be utilized by the cells until it has been excreted and transported back into the normal pool channels. In this case, the transport (exogenous) and protein synthesis pools would be involved. The abnormal mislocation of the phenylalanine in the cell might be a result of the diffusion of free prephenate to low pH regions in the cell where it is nonenzymatically converted to phenylpyruvate. If, however, the mutant prephenate dehydratase is active in vivo, the mutation must somehow affect the activity or stability of the enzyme in vitro and also cause the release of the end product in the wrong place in the cell. This might be expected if the normal wild-type prephenate dehydratase is directionally oriented, e.g., as a result of membrane association, to release the product into normal cell channels (protein synthesis pool) while such oriented release might not occur in the mutants.This work was supported, in part, by an Atomic Energy Commission grant to the Institute of Molecular Biophysics, The Florida State University, and by the Genetics Training Grant, funded by the National Institutes of Health. It contains, in part, data from the doctoral thesis of the senior author, who was supported by a Florida State University Nuclear Fellowship and by a Public Health Service Fellowship.  相似文献   

3.
In Brevibacterium flavum, prephenate dehydratase in the phenylalanine specific biosynthetic pathway was strongly inhibited by phenylalanine and activated by tyrosine. Furthermore. the inhibition by phenylalanine was completely reversed by tyrosine. Inhibition by tyrosine of prephenate dehydrogenase in the tyrosine specific pathway was very weak. Overall regulation mechanism of the aromatic amino acid biosynthesis in B. flavum was proposed on the bases of these results and the previous findings on 3-deoxy-D-arabino-heptulosonate-7- phosphate synthetase(DAHP synthetase*) of the common pathway and on anthranilate synthetase of the tryptophan specific pathway. Two types of m-fluorophenylalanine(mFP) resistant mutants which accumulated phenylalanine alone or both phenylalanine and tyrosine, respectively, were derived. The accumulation in the former mutants was inhibited by tyrosine, but that in the latter was affected neither by tyrosine nor by phenylalanine. DAHP synthetase of the latter mutants had been desensitized from the synergistic feedback inhibition by tyrosine and phenylalanine, while prephenate dehydratase of the former mutants had been desensitized in the feedback inhibition by phenylalanine. Tyrosine auxotroph accumulated phenylalanine under tyrosine limitation and its accumulation was inhibited by the excessive addition of tyrosine. Phenylalanine auxotroph accumulated tyrosine under phenylalanine limitation and its accumulation was inhibited by the excessive addition of phenylalanine. These results in vivo strongly supported the proposed regulation mechanism in which synthesis of phenylalanine in preference to tyrosine was assumed.  相似文献   

4.
  1. Mutants derived from the hydrogen bacterium Alcaligenes eutrophus strain H16 auxotrophic for phenylalanine and tyrosine were isolated employing mutagenic agents (EMS, nitrite), the colistine counterselection technique and the “pin-point” isolation method. Three different types of mutants were found: (1) Mutants, requiring phenylalanine or phenylpyruvate for growth, were affected in chorismate mutase as well as prephenate dehydratase. Both activities were regained by reversion to prototrophy. The auxotrophic strains accumulated chorismic acid. (2) Strains with a growth response similar to that of the first group lacked only prephenate dehydratase activity which was partially regained by reversion. Chorismate mutase and prephenate dehydrogenase were derepressed up to two-fold. Mutants grown in minimal medium excreted prephenic acid. (3) The third type of mutants required phenylalanine or phenylpyruvate and grew slowly when supplemented with chorismate or prephenate. The enzymes involved in the specific pathway of phenylalanine and tyrosine were found to be present. Some of them were even more active than in the wild-type.
  2. Mutants accumulating chorismic acid or prephenic acid were able to grow on minimal medium when incubated long enough. The chemical instability of the excretion products resulted in their nonenzymatic conversion to subsequent intermediates which were taken up by the cells, allowing growth.
  3. A method is described for preparing barium prephenate using the auxotrophic mutant 6B-1 derived from A. eutrophus H16. Prephenic acid, excreted by this strain, was obtained from the culture filtrate with a purity of at least 70% and a yield of approximately 180 mg per 2 l of medium.
  相似文献   

5.
1. Mutants derived from the hydrogen bacterium Alcaligenes eutrophus strain H 16 auxotrophic for phenylalanine and tyrosine were isolated employing mutagenic agents (EMS, nitrite), the colistine counterselection technique and the "pin-point" isolation method. Three different types of mutants were found: (1) Mutants, requiring phenylalanine or phenylpyruvate for growth, were affected in chorismate mutase as well as prephenate dehydratase. Both activities were regained by reversion to prototrophy. The auxotrophic strains accumulated chorismic acid. (2) Strains with a growth response similar to that of the first group lacked only prephenate dehydratase activity which was partially regained by reversion. Chorismate mutase and prephenate dehydrogenase were derepressed up to two-fold. Mutants grown in minimal medium excreted prephenic acid. (3) The third type of mutants required phenylalanine or phenylpyruvate and grew slowly when supplemented with chorismate or prephenate. The enzymes involved in the specific pathway of phenylalanine and tyrosine were found to be present. Some of them were even more active than in the wild-type. 2. Mutants accumulating chorismic acid or prepheric acid were able to grow on minimal medium when incubated long enough. The chemical instability of the excretion products resulted in their nonenzymatic conversion to subsequent intermediates which were taken up by the cells, allowing growth. 3. A method is described for preparing barium prephenate using the auxotrophic mutant 6B-1 derived from A.eutrophus H 16. Prephenic acid, excreted by this strain, was obtained from the culture filtrate with a purity of at least 70% and a yield of approximately 180 mg per 21 of medium.  相似文献   

6.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

7.
Mutant strains of Phormidium uncinatum resistant to fluoro-phenylalanine, aztryptophan, fluorotyrosine and azaleucine accumulated a wide range of amino acids, notably glutamic acid, lysine, tyrosine and phenylalanine, and exhibited de-regulated valine and phenylalanine transport. While acetohydroxy acid synthase in azaleucine-resistant mutants lost valine- and leucine-sensitivity, 3-deoxy-Dxxx-arabinoheplulosonate-7-phosphate (DAHP) synthase and prephenate dehydratase in aromatic analogue-resistant strains became phenylalanine-insensitive and shikimate and prephenate dehydrogenases were activated by tyrosine. In addition, activities of nitrate-assimilating enzymes were higher in the mutants, which also exhibited increased nitrogen, protein and phycocyanin contents. The proteins in the mutants were better digested upon enzymatic-treatments and feeding trials than those of the wild type, indicating that they are usable as single-cell protein.N.S. Rao and T.M. Shakila are and S.N. Bagchi was with the Department of Biological Sciences, R.D. University, Jabalpur-482 001, Madhya Pradesh, India. S.N. Bagchi is now with the Department of Microbiology, MDS University, Amjer-305 001, Rajasthan, India.  相似文献   

8.
The regulatory properties of three key enzymes in the phenylalanine biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DAHP synthetase) [EC 4.1.2.15], chorismate mutase [EC 5.4.99.5], and prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] were compared in three phenylalanine-excreting mutants and the wild strain of Brevibacterium flavum. Regulation of DAHP synthetase by phenylalanine and tyrosine in these mutants did not change at all, but the specific activities of the mutant cell extracts increased 1.3- to 2.8-fold, as reported previously (1). Chorismate mutase activities in both the wild and the mutant strains were cumulatively inhibited by phenylalanine and tyrosine and recovered with tryptophan, while the specific activities of the mutants increased 1.3- to 2.8-fold, like those of DAHP synthetase. On the other hand, the specific activities of prephenate dehydratase in the mutant and wild strains were similar, when tyrosine was present. While prephenate dehydratase of the wild strain was inhibited by phenylalanine, tryptophan, and several phenylalanine analogues, the mutant enzymes were not inhibited at all but were activated by these effectors. Tyrosine activated the mutant enzymes much more strongly than the wild-type enzyme: in mutant 221-43, 1 mM tyrosine caused 28-fold activation. Km and the activation constant for tyrosine were slightly altered to a half and 6-fold compared with the wild-type enzyme, respectively, while the activation constants for phenylalanine and tryptophan were 500-fold higher than the respective inhibition constants of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 x 10(5), a half of that of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 X 10(5) a half of that of the wild type enzyme, while in the presence of tyrosine, phenylalanine, or tryptophan, it increased to that of the wild-type enzyme. Immediately after the mutant enzyme had been activated by tyrosine and then the tyrosine removed, it still showed about 10-fold higher specific activity than before the activation by tyrosine. However, on standing in ice the activity gradually fell to the initial level before the activation by tyrosine. Ammonium sulfate promoted the decrease of the activity. On the basis of these results, regulatory mechanisms for phenylalanine biosynthesis in vivo as well as mechanisms for the phenylalanine overproduction in the mutants are discussed.  相似文献   

9.
l-Histidine and, to a lesser degree, l-phenylalanine at concentrations of 10(-4)m inhibit the growth of leaky mutants (bradytrophs) of Bacillus subtilis that are deficient in the synthesis of p-hydroxyphenylpyruvate, the first intermediate specific to tyrosine synthesis. The inhibition can be overcome by growth factor amounts of l-tyrosine and p-hydroxyphenylpyruvate. Histidine and phenylalanine are capable of inhibiting the synthesis of tyrosine in several ways, and the major physiological effect which results in growth inhibition has not been established. Both l-histidine and l-phenylalanine inhibit the activity of prephenate dehydrogenase at concentrations about 100-fold higher than the inhibitory concentration of l-tyrosine. Histidine also appears to repress the synthesis of prephenate dehydrogenase because a histidine bradytroph growing in histidine-supplemented medium has a twofold lower level of this enzyme than the same cells growing in unsupplemented medium. These same two amino acids also inhibit the growth of a bradytroph deficient in dehydroquinate synthetase, an early enzyme in the pathway of tyrosine, phenylalanine, and tryptophan synthesis. The inhibition is overcome by a combination of tyrosine and phenylalanine. Histidine-resistant derivatives of both the prephenate dehydrogenase and dehydroquinate synthetase-deficient strains, which simultaneously have gained resistance to phenylalanine, have been isolated. Most of these resistant mutants synthesize additional tyrosine compared with the parent strain. One class of resistant mutants excretes tyrosine and has a number of enzymes of aromatic acid synthesis which are no longer repressible by any combination of the aromatic amino acids. Tyrosine inhibits the growth of histidine bradytrophs. Histidine, at growth factor levels, overcomes the inhibition.  相似文献   

10.
The enzyme activities specified by the tyrA and pheA genes were studied in wildtype strain Salmonella typhimurium and in phenylalanine and tyrosine auxotrophs. As in Aerobacter aerogenes and Escherichia coli, the wild-type enzymes of Salmonella catalyze two consecutive reactions: chorismate --> prephenate --> 4-hydroxy-phenylpyruvate (tyrA), and chorismate --> prephenate --> phenylpyruvate (pheA). A group of tyrA mutants capable of interallelic complementation had altered enzymes which retained chorismate mutase T activity but lacked prephenate dehydrogenase. Similarly, pheA mutants (in which interallelic complementation does not occur) had one group with altered enzymes which retained chorismate mutase P but lacked prephenate dehydratase. Tyrosine and phenylalanine auxotrophs outside of these categories showed loss of both activities of their respective bifunctional enzyme. TyrA mutants which had mutase T were considerably derepressed in this activity by tyrosine starvation and consequently excreted prephenate. A new and specific procedure was developed for assaying prephenate dehydrogenase activity.  相似文献   

11.
Two isozymes of chorismate mutase (CA mutase(1) and CA mutase(2)) and two isozymes of prephenate dehydratase (PPA dehydratase(1) and PPA dehydratase(2)) have been found in Pseudomonas aeruginosa. The activities CA mutase(2)-PPA dehydratase(2) catalyzing phenylalanine biosynthesis have been purified almost 40-fold and were found to be associated as a bifunctional enzyme or an enzyme complex. The enzymes specific for tyrosine biosynthesis did not appear to manifest such physical association. Thus, the organization of enzymes concerned with phenylalanine and tyrosine biosynthesis in P. aeruginosa is unique and is unlike most other organisms. Single site mutants have been isolated which have lost both CA mutase(2)-PPA dehydratase(2) activities resulting in a requirement for phenylalanine for growth. Single site revertants of these mutants regained both these activities simultaneously and were able to grow on minimal medium. A mutant, r(6), was also isolated which had normal CA mutase(2) but lacked PPA dehydratase(2) activity.  相似文献   

12.
The chorismate mutase and prephenate dehydratase genes of phenylalanine producing Corynebacterium glutamicum K38, which is resistant to p-fluorophenylalanine and m-fluorophenylalanine, were cloned into plasmid pCE53 in C. glutamicum KY9456, which lacks chorismate mutase and prephenate dehydratase. One of the resultant plasmids, pCmB4, contained a 9.4kb BamHI DNA fragment inserted into the unique BamHl site of pCE53. Plasmid pCmB4 complemented a phenylalanine and tyrosine double auxotroph of C. glutamicum KY9456. Introduction of pCmB4 into C. glutamicum RRL5 resulted in an about ten times increase in chorismate mutase activity. C. glutamicum K38 carrying the plasmid accumulated 19.0mg/ml of phenylalanine (50% increase over the yield of K38).  相似文献   

13.
Aromatic amino acids are protein building blocks and precursors to a number of plant natural products, such as the structural polymer lignin and a variety of medicinally relevant compounds. Plants make tyrosine and phenylalanine by a different pathway from many microbes; this pathway requires prephenate aminotransferase (PAT) as the key enzyme. Prephenate aminotransferase produces arogenate, the unique and immediate precursor for both tyrosine and phenylalanine in plants, and also has aspartate aminotransferase (AAT) activity. The molecular mechanisms governing the substrate specificity and activation or inhibition of PAT are currently unknown. Here we present the X‐ray crystal structures of the wild‐type and various mutants of PAT from Arabidopsis thaliana (AtPAT). Steady‐state kinetic and ligand‐binding analyses identified key residues, such as Glu108, that are involved in both keto acid and amino acid substrate specificities and probably contributed to the evolution of PAT activity among class Ib AAT enzymes. Structures of AtPAT mutants co‐crystallized with either α‐ketoglutarate or pyridoxamine 5′‐phosphate and glutamate further define the molecular mechanisms underlying recognition of keto acid and amino acid substrates. Furthermore, cysteine was identified as an inhibitor of PAT from A. thaliana and Antirrhinum majus plants as well as the bacterium Chlorobium tepidum, uncovering a potential new effector of PAT.  相似文献   

14.
Time-course changes in rosmarinic acid (RA) formation and activities of tyrosine aminotransferase (TAT) isoforms were examined in Anchusa officinalis suspension cultures. Three TAT isoforms (TAT-1, TAT-3, TAT-4) were resolved by Mono-Q anion-exchange column chromatography. The proportion of the TAT-3 activity within the total TAT activity remained high regardless of the growth stage of the cultured cells. TAT-1 activity was positively correlated with the rate of RA biosynthesis during linear growth stage of the culture cycle, while TAT-4 activity was rapidly induced in conjunction with transfer to fresh medium coincident with a transient increase in RA synthesis. Based on these results, as well as the substrate specificity of each TAT isoform, it was concluded that both TAT-1 and TAT-4 are closely involved in RA biosynthesis. TAT-1 controls conversion of tyrosine to 4-hydroxyphenyl pyruvate, and TAT-4 acts by participating in the formation of tyrosine and phenylalanine via prephenate.Abbreviations PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - RA rosmarinic acid  相似文献   

15.
16.
This paper reports the first isolation of Saccharomyces cerevisiae mutants lacking aromatic aminotransferase I activity (aro8), and of aro8 aro9 double mutants which are auxotrophic for both phenylalanine and tyrosine, because the second mutation, aro9, affects aromatic aminotransferase II. Neither of the single mutants displays any nutritional requirement on minimal ammonia medium. In vitro, aromatic aminotransferase I is active not only with the aromatic amino acids, but also with methionine, α-aminoadipate, and leucine when phenylpyruvate is the amino acceptor, and in the reverse reactions with their oxo-acid analogues and phenylalanine as the amino donor. Its contribution amounts to half of the glutamate:2-oxoadipate activity detected in cell-free extracts and the enzyme might be identical to one of the two known α-aminoadipate aminotransferases. Aromatic aminotransferase I has properties of a general aminotransferase which, like several aminotransferases of Escherichia coli, may be able to play a role in several otherwise unrelated metabolic pathways. Aromatic aminotransferase II also has a broader substrate specificity than initially described. In particular, it is responsible for all the measured kynurenine aminotransferase activity. Mutants lacking this activity grow very slowly on kynurenine medium. Received: 21 October 1996 / Accepted: 23 September 1997  相似文献   

17.
Summary We have isolated and characterized a new class of p-fluorophenylalanine (FPA)-resistant mutant in Aspergillus nidulans using a phenA strain as the wild type, by optimizing the conditions of growth. All four spontaneous mutants selected on a medium containing FPA were found to be recessive to their wild-type alleles in heterozygous diploids. Complementation analyses and linkage data showed that they were allelic and mapped at a single locus (fpaU) in the facA-riboD interval on the right arm of linkage group V. Partial purification and characterization of Phe-tRNA synthetase from wild-type and mutant strains revealed that the mutant enzyme had a greatly reduced ability to activate the analogue. It is suggested that mutation in the fpaU gene brings about a structural alteration in Phe-tRNA synthetase.Abbreviations FPA DL-p-fluorophenylalanine - phenA auxotroph of phenylalanine - Phe-tRNA synthetase phenylalanyl-transfer ribonucleic acid synthetase Current address: Department of Biological Sciences (M/C 066) The University of Illinois at Chicago, Box 4348, Chicago, IL 60680, USA  相似文献   

18.
Incubating chloridazon-degrading bacteria with L-phenylalanine leads to the accumulation of L-2,3-dihydroxyphenylalanine, o-tyrosine and m-tyrosine in the medium. Incubating the bacteria with N-acetyl-L-phenylalanine leads to N-acetyl-(2,3-dihydroxyphenyl)alanine. Using phenylacetic acid as substrate leads to the accumulation of malonic acid. The products are isolated by gel chromatography and high performance liquid chromatography. 2,3-Dihydroxy-L-phenylalanine is attacked by a catechol 2,3-dioxygenase in the presence of Fe2. An unstable yellow compound is formed in this reaction. This meta-cleavage-product is again cleaved by a hydrolase, leading to aspartic acid and 4-hydroxy-2-oxovaleric acid. Both products were isolated fromthe reaction buffer by amino acid analysis and high performance liquid chromatography. The dioxygenase and hydrolase were partially purified and characterized. A new degradation pathway for phenylalanine is discussed and compared with known pathways. The enzymes chorismate mutase, prephenate dehydratase and prephenate dehydrogenase are characterized and inhibition as well as repression are investigated. Only prephenate dehydrogenase is inhibited by phenylalanine, tyrosine and tryptophane. Chorismate mutase is repressed by phenylalanine, prephenate dehydrogenase by phenylalanine and tyrosine. Prephenate dehydratase is not repressed by aromatic amino acids. Regulation of aromatic amino acid biosynthesis in connection with phenylalanine degradation is discussed.  相似文献   

19.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

20.
A number of tryptophan plus tyrosine double auxotrophic mutants isolated by the NTG treatment of a glutamate producing strain of Arthrobacter globiformis were found to excrete phenylalanine in a mineral salt medium. By controlling the pH of the medium to near neutrality, the active growth period could be extended up to 72 h and more phenylalanine was accumulated compared to the unregulated culture where the growth period took up to 48 h. Under optimum culture conditions, the best double auxotroph (TT-39) produced 3 g phenylalanine/l. Further improvement of phenylalanine production has been achieved by the step-by-step isolation of a mutant resistant to the phenylalanine analogues p-fluorophenylalanine (PFP) and β-2-thienylalanine (TA) from the TT-39 strain. Under optimum culture conditions, the best double auxotrophic analogue resistant mutant TT-39 PTr-21 yielded 8.7 g/l phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号