首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated whether composting methods differ in their impact on seed germination of Rumex obtusifolius (broad‐leaved dock). Weed seeds were buried in windrows of cattle farmyard manure, removed at monthly intervals and germinated during the course of 7 months. Composting methods differed in the maximum temperatures reached (63°C for conventional and biodynamic composting and 35°C for vermicomposting), the addition of 1000 m?2 earthworms (Eisenia fetida) for vermicomposting and the inoculation of biodynamic preparations for biodynamic composting. After 1 month in windrows, germination rate of Rumex seeds was significantly higher in vermicompost (48%) than in conventional (28%) or biodynamic compost (18%). After 2 months in windrows, 26% of the seeds germinated in vermicomposting windrows, while those inserted in conventional and biodynamic windrows showed a negligible germination (0% and 2%, respectively). After 3 and 4 months, only seeds under vermicomposting germinated (22% and 3%, respectively). No germination was determined when seeds were inserted for longer than 4 months in any of the treatments. Seeds stored at room temperature germinated at 89% over the course of the experiment. Results suggest that the maximum temperature reached in windrows is not the single main factor reducing weed seed germination during composting.  相似文献   

2.
Preliminary studies were conducted on wheat straw to test the technical viability of an integrated system of composting, with bioinoculants and subsequent vermicomposting, to overcome the problem of lignocellulosic waste degradation, especially during the winter season. Wheat straw was pre-decomposed for 40 days by inoculating it with Pleurotus sajor-caju, Trichoderma harzianum, Aspergillus niger and Azotobacter chroococcum in different combinations. This was followed by vermicomposting for 30 days. Chemical analysis of the samples showed a significant decrease in cellulose, hemicellulose and lignin contents during pre-decomposition and vermicomposting. The N, P, K content increased significantly during pre-decomposition with bioinoculants. The best quality compost, based on chemical analysis, was prepared where the substrate was treated with all the four bioinoculants together followed by vermicomposting. Results indicated that the combination of both the systems reduced the overall time required for composting and accelerated the composting of ligno-cellulosic waste during the winter season besides producing a nutrient-enriched compost product.  相似文献   

3.
Traditional thermophilic composting is commonly adopted for treatment of organic wastes or for production of organic/natural fertilizers. A related technique, called vermicomposting (using earthworms to breakdown the organic wastes) is also becoming popular. These two techniques have their inherent advantages and disadvantages. The integrated approach suggested in this study borrows pertinent attributes from each of these two processes and combines them to enhance the overall process and improve the products qualities. Two approaches investigated in this study are: (1) pre-composting followed by vermicomposting, and (2) pre-vermicomposting followed by composting. The substrate was biosolids (activated sewage sludge) with mixed paper-mulch as the carbon base. Eisenia fetida (red wigglers) was the species of earthworms used in the vermicomposting processes. The results indicate that, a system that combines the two processes not only shortens stabilization time, but also improves the products quality. Combining the two systems resulted in a product that was more stable and consistent (homogenous), had less potential impact on the environment and for compost-vermicomposting (CV) system, the product met the pathogen reduction requirements.  相似文献   

4.
Zeng G  Fu H  Zhong H  Yuan X  Fu M  Wang W  Huang G 《Biodegradation》2007,18(3):303-310
Strengthened biodegradation is one of the key means to treat surfactant pollution in environment, and microorganism and surfactant have significant effects on degradation. In this paper, co-degradation of CTAB, Triton X-100, SDS and rhamnolipid with glucose by Pseudomonas aeruginosa, Bacillus subtilis and compost microorganisms in liquid culture media, as well as the degradation of rhamnolipid in compost were investigated. The results showed that CTAB was recalcitrant to degrade by the three microorganisms and it also inhibited microorganisms from utilizing readily degradable carbon source. Non-ionic surfactant Triton X-100 could also hardly be degraded, but it was not toxic to microorganisms and would not inhibit the growth of the microorganisms. Anion surfactant SDS had no toxicity to microorganisms and could be co-degraded as carbon source with glucose. Biosurfactant rhamnolipid was a kind of particular surfactant, which had no toxicity and could be degraded by Bacillus subtilis and compost microorganisms, while it could not be utilized by its producing bacterium Pseudomonas aeruginosa. Among these three bacteria, the compost consortium had the strongest degradation capacity on the tested surfactants due to their microorganisms’ diversity. In compost matrix rhamnolipid could be degraded during composting, but not preferentially utilized.  相似文献   

5.
Composting is the biochemical transformation of waste organic matter by microorganisms whose metabolism occurs in the water-soluble phase. Therefore, a study of the changes occurring in compost dissolved organic matter can be useful for assessing its stability and maturity. In light of the variety of parameters generally utilized to study composting processes, this work aims at identifying the major chemical processes that occur in solution and their influence on the attainment of stability and maturity with composting time. Compost stability, assessed by means of respirometric analysis which determined oxygen demand as a result of mineralization of the compost's organic matter, and compost maturity evaluated with Lepidium sativum L. seed bioassays, were found to be highly related to the nature and content of water-soluble organic matter. Moreover, fractionation of the water-extractable organic carbon showed that the ratio of hydrophobic to hydrophilic carbon increased to values greater than unity for stabilized compost. These results together with the analysis for non-cellulosic polysaccharides, phenolic compounds and organic nitrogen within the water extracts, confirmed the influence of solubilization, mineralization and organic matter transformation on the quality of the final compost.  相似文献   

6.
Analytical pyrolysis (Py-GC/MS) was used to study complex composting processes. The technique was first validated for reproducibility and finally applied to assess the efficiency of a microbial bio-accelerator product (CBB) in composting organic residues with different composition. Fresh lignocellulosic and urban wastes were treated with CBB and the composting kinetics studied to investigate the transformations undergone in the course of biocomposting. Our findings demonstrate that these changes, as well as the efficiency of CBB, can be monitored through the molecular characterization of the released pyrolysis products. The CBB bacterial product effectively seems to favour composting accelerating the process and shorten composting time. Analytical pyrolysis was informative in assessing to which extent compost transformation reached an acceptable stabilization point. The technique could be also developed into a semi-quantitative tool to monitor changes of main organic matter components (polysaccharides, proteins, lignin, lipids, etc.) as composting proceeds.  相似文献   

7.
Characterization of dairy cattle manure/wallboard paper compost mixture   总被引:5,自引:0,他引:5  
The aim of this research was to evaluate the use of manufacturing wallboard paper scraps as an alternative bulking agent for dairy cattle manure composting. The characteristics of the composting process were studied based on the changes in physico-chemical parameters and final compost quality. Composting of dairy cattle manure with wallboard paper was performed in a 481-L cylindrical reactor with vacuum-type aeration. Rapid degradation of organic matter was observed during the thermophilic stage of composting due to high microbial activity. High temperature and alkaline pH conditions promoted intense ammonia emission during the early stage of composting. The number of mesophilic and thermophilic microorganisms were found to be affected by changes in temperature at different composting stages. The total nitrogen (N), phosphorus (P), potassium (K), and sodium (Na) concentrations of the mixture did not change significantly after 28days of composting. However, the presence of gypsum in the paper scraps increased the calcium content of the final compost. The wallboard paper had no phyto-inhibitory effects as shown by high germination index of final compost (GI=99%).  相似文献   

8.
Two laboratory-scale systems were set up (i) composting (without earthworms) and (ii) vermicomposting (with earthworms) and were monitored for 60 days after pre-composting. The physico-chemical parameters (pH, C/N, organic matter, NH(4)(+)-N and ash content) showed similar evolution in both systems except a higher NH(4)(+)-N in the initial vermicomposts. However, principle component analysis (PCA) of enzymatic activities and community level physiological profiles revealed differences in the functional response of microbial communities in compost and vermicompost during maturation. Dehydrogenase activity and bacterial counts indicated a steady decrease in biological activity and population during composting, whereas vermicomposting exhibited higher activity on day 30 and a reduction in bacterial counts on day 10. PCA of denatured gradient gel electrophoresis (DGGE) profiles showed divergent dynamics of bacterial communities in two processes. These results indicated differences in the functional response and genetic structure of microbial community in composts and vermicomposts despite similar changes in their physico-chemical parameters.  相似文献   

9.
The use of maize straw (MS) or cotton waste (CW) as bulking agents in the composting of olive mill wastewater (OMW) sludge was compared by studying the organic matter (OM) mineralisation and humification processes during composting and the characteristics of the end products. Both composts were prepared in a pilot-plant using the Rutgers static-pile system. The use of CW instead of MS to compost OMW sludge extended both the thermophilic and bio-oxidative phases of the process, with higher degradation of polymers (mainly lignin and cellulose), a greater formation of nitrates, higher total nitrogen losses and a lower biological nitrogen fixation. The CW produced a compost with a more stabilised OM and more highly polymerised humic-like substances. In the pile with CW and OMW sludge, OM losses followed a first-order kinetic equation, due to OM degradation being greater at the beginning of the composting and remaining almost constant until the end of the process. However, in the pile with MS and OMW sludge this parameter followed a zero-order kinetic equation, since OM degraded throughout the process. The germination index indicated the reduction of phytotoxicity during composting.  相似文献   

10.
Survival and movement of Escherichia coli O157:H7 in both soil and vermicompost is of concern with regards to human health. Whilst it is accepted that E. coli O157:H7 can persist for considerable periods in soils, it is not expected to survive thermophilic composting processes. However, the natural behavior of earthworms is increasingly utilized for composting (vermicomposting), and the extent to which earthworms promote the survival and dispersal of the bacterium within such systems is unknown. The faecal material produced by earthworms provides a ready supply of labile organic substrates to surrounding microbes within soil and compost, thus promoting microbial activity. Earthworms can also cause significant movement of organisms through the channels they form. Survival and dispersal of E. coli O157:H7 were monitored in contaminated soil and farmyard manure subjected to earthworm digestion over 21 days. Our findings lead to the conclusion that anecic earthworms such as Lumbricus terrestris may significantly aid vertical movement of E. coli O157 in soil, whereas epigeic earthworms such as Dendrobaena veneta significantly aid lateral movement within compost. Although the presence of earthworms in soil and compost may aid proliferation of E. coli O157 in early stages of contamination, long-term persistence of the pathogen appears to be unaffected.  相似文献   

11.
湿度对堆肥理化性质的影响   总被引:17,自引:0,他引:17  
罗维  陈同斌 《生态学报》2004,24(11):2656-2663
水分是堆肥微生物生命活动的基础 ,也是堆肥中重要的工艺控制参数。弄清湿度对堆肥微生物及理化性质的影响 ,对于优化堆肥工艺参数、提高堆肥效率、降低投资和运行成本具有重要意义。综述了堆肥湿度研究的动态 ,指出了当前研究中存在的问题 ,并提出了未来的研究方向。大量的研究表明 ,湿度低于 4 5 %或高于 6 5 %都不利于堆肥处理。湿度太高会导致堆料的压实度增加、FAS减少、透气性能降低 ,从而导致堆体内氧气供应不足、堆肥升温困难、有机物降解速率降低、堆肥周期延长。湿度过低 ,水分会限制堆肥微生物的新陈代谢 ,导致微生物活性下降、堆肥腐熟困难。由于鼓风、散热、水蒸发等会使堆体内存在湿度的空间变异 ,也会降低堆肥效率和堆肥产品的质量。另外 ,堆肥湿度还影响堆肥的保肥能力。由各文献得出结论 ,堆肥的最佳湿度范围一般为 5 0 %~ 6 0 %左右  相似文献   

12.
Rotary drum composting of vegetable waste and tree leaves   总被引:2,自引:0,他引:2  
High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m3) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60–70 °C) at inlet zone and (50–60 °C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO2 evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO2 evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.  相似文献   

13.
Microbial Community Changes During the Composting of Municipal Solid Waste   总被引:8,自引:0,他引:8  
Abstract Phospholipid fatty acid (PLFA) analysis has been used to characterize microorganisms from a range of different environments, but has not been previously used in the assessment of compost organisms. Compost processing and maturity are assumed to be related to the microorganisms present, but methods to elucidate and evaluate these relationships are lacking. In this study, PLFA analysis was used to follow microbial community changes during the composting of municipal solid waste (MSW). Patterns of change were compared between pilot- and full-scale facilities and between varied feedstocks. At the pilot level, actual MSW and two synthetic MSW formulations (similar C:N, different available C) were composted. At the full-scale facilities, actual MSW was composted as was actual MSW amended with nitrogen. The PLFA data generated by all studies was analyzed using principal component and multivariate statistical methods. The PLFA profiles changed over the composting process in a consistent and predictable manner. PLFA profiles also proved to be characteristic of specific stages of composting and may, therefore, be useful in evaluating (and optimizing) the progress of material processing and product maturity. Received: 28 November 1995; Revised: 12 March 1996; Accepted: 15 March 1996  相似文献   

14.
An in vitro study of different strains isolated from composting piles in relation to their capacity to biodegrade lignocellulose was achieved. Thirteen microorganisms (five bacteria, one actinomycete, and seven fungi) isolated from compost windrows were grown on agricultural wastes and analyzed for cellulose, hemicellulose, and lignin degradation. Hemicellulose fraction was degraded to a lesser extent because only two of the isolates, B122 and B541, identified as Bacillus licheniformis and Brevibacillus parabrevis, respectively, were able to decrease the concentration of this polymer. On the contrary, most of the isolates were capable of reducing cellulose and lignin concentrations; strain B541 was the most active cellulose degrader (51%), while isolate B122 showed higher lignin degradation activity (68%). Consequently, an increase in humification indices was detected, especially with respect to humification index (HI) for both bacteria and CAH/AF in the case of strain B122. According to these data, the use of microbial inoculants as a tool to improve organic matter biodegradation processes (i.e., composting) may become important if microorganisms’ capabilities are in accordance with the final characteristics required in the product (high humic content, lignin content decrease, cellulose concentration decrease, etc.).  相似文献   

15.
There are few reports on the material transformation and dominant microorganisms in the process of greening waste (GW) composting. In this study, the target microbial community succession and material transformation were studied in GW composting by using MiSeq sequencing and PICRUSt tools. The results showed that the composting process could be divided into four phases. Each phase of the composting appeared in turn and was unable to jump. In the calefactive phase, microorganisms decompose small molecular organics such as FA to accelerate the arrival of the thermophilic phase. In the thermophilic phase, thermophilic microorganisms decompose HA and lignocellulose to produce FA. While in the cooling phase, microorganisms degrade HA and FA for growth and reproduction. In the maturation phase, microorganisms synthesize humus using FA, amino acid and lignin nuclei as precursors. In the four phases of the composting, different representative genera of bacteria and fungi were detected. Streptomyces, Myceliophthora and Aspergillus, maintained high abundance in all phases of the compost. Correlation analysis indicated that bacteria, actinomycetes and fungi had synergistic effect on the degradation of lignocellulose. Therefore, it can accelerate the compost process by maintaining the thermophilic phase and adding a certain amount of FA in the maturation phase.  相似文献   

16.
The composting of olive leaves and olive pomace from a three-phase olive mill was tested as a method for solid waste reuse. The process was carried out using a compost windrow and mixing olive leaves and pomace at a ratio of 1:2. Compost was retained in the windrow for 60 days during which thermophilic temperatures developed for the first 40 days. The compost was then placed into a closed area to mature for another 60 days. The final product proved to be high quality amendment with C/N 27.1 and high nutrient concentrations (N, 1.79%; P, 0.17%; K, 4.97%; Na, 2.8%). Mature compost presented the highest germination index (198%) reported to date, as the germination index in the majority of previous studies is under 80%. Furthermore, tests revealed that addition of 31.5 tons of compost per ha, could increase lettuce yield by 145%.  相似文献   

17.
Cattle manure composts were consecutively manufactured. Compost that reached maturity first was used as a bulking and inoculating agent for subsequent compost production. The microbial community was measured through phospholipid fatty acid analysis. Changes in the content of fatty acid methyl esters derived from phospholipids were similar in all the composts. The diversity index for the fatty acid methyl ester content increased in the secondary-produced compost from the onset of composting. Microbial succession was accelerated using matured compost. The proportion of biomarker fatty acids for gram-positive bacteria also increased in the secondary-produced compost from the early stage of composting. Changes in germination index indicated the maturity stage of the compost. The proportion of biomarker fatty acids for gram-positive bacteria was positively correlated to the germination index, indicating that phospholipid fatty acid analysis is an indicator for evaluating the maturity of cattle manure composts.  相似文献   

18.
Fewer and fewer municipal solid wastes are treated by composting in China because of the disadvantages of enormous investment, long processing cycle and unstable products in a conventional composting treatment. In this study, a continuous thermophilic composting (CTC) method, only a thermophilic phase within the process, has been applied to four bench-scale composting runs, and further compared with a conventional composting run by assessing the indexes of pH, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N ratio, germination index (GI), specific oxygen uptake rate (SOUR), dissolved organic carbon (DOC) and dehydrogenase activity. After composting for 14 days, 16 days, 18 days and 19 days in the four CTC runs, respectively, mature compost products were obtained, with quality similar to or better than which had been stabilized for 28 days in run A. The products from the CTC runs also showed favorable stability in room temperature environment after the short-term composting at high temperature. The study suggested CTC as a novel method for rapid degradation and maturation of organic municipal solid wastes.  相似文献   

19.
This paper describes the degradation of naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene in soil and soil/compost mixtures. Compost addition facilitated the degradation of 500 mg naphthalene/kg soil and 100 mg/kg each of other polycyclic aromatic hydrocarbons (PAH) within 25 days in soil systems with water contents below the water-holding capacity. By means of a humic acid extraction, it was demonstrated that the decrease of PAH concentrations after compost addition was not caused by a sorption to organic matter preventing PAH analysis. The enhanced PAH degradation was examined in a series of batch experiments with contaminated soil to evaluate whether the effect of compost addition is caused by the microorganisms of the compost itself, by the properties of the organic matrix of the compost material, or by water-soluble fertilising substances. The experiments revealed that the release of fertilising substances from the compost and the shift of soil pH brought about by the compost did not cause the stimulatory effect. The microorganisms inherent to the compost were also not necessary for the enhanced degradation. Sterilised compost was recolonised by soil microorganisms after a lagphase yielding a degradation activity similar to that of the non-sterilised compost. The presence of the solid organic matrix of the compost seemed to be essential for the enhanced degradation. The soil/compost microflora, which was separated from the organic matrix in liquid cultures, exhibited a much lower degrading activity than in the presence of the solid organic material.  相似文献   

20.
The composting process of food wastes and tree cuttings was examined on four composting types composed from two kinds of systems and added mixture of microorganisms. The time courses of 32 parameters in each composting type were observed. The efficient composting system was found to be the static aerated reactor system in comparison with the turning pile one. Using the multiple regression analysis of all the data (159 samples) obtained from this study, some parameters were selected to predict the germination index (GI) value, which was adopted as a marker of compost maturity. For example, using the regression model generated from pH, NH(4)(+) concentration, acid phosphatase activity, and esterase activity of water extracts of the compost, GI value was expressed by the multi-linear regression equation (p<0.0001). High correlations between the measured GI value and the predicted one were made in each type of compost. As a result of these observations, the compost maturity might be predicted by only sensing of the water extract at the composting site without any requirements for a large-size equipment and skill, and this prediction system could contribute to the production of a stable compost in wide-spread use for the recycling market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号