首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in the structure of d(GGGA)(5) oligonucleotide in the presence of Li(+), Na(+), and K(+) ions and its temperature stability were studied using electronic and vibrational circular dichroism, IR absorption, and ab initio calculations with the Becke 3-Lee-Yang-Parr functional at the 6-31G** level. The samples were characterized by nondenaturing gel electrophoresis. Oligonucleotide d(GGGA)(5) in the presence of Li(+) forms a nonplanar single tetramer, with angles of 102 degrees and 171 degrees between neighboring guanine bases. This tetramer changes its geometry at temperatures >50 degrees C, but does not form a quadruplex structure. In the presence of Na(+), the d(GGGA)(5) structure was optimized to almost planar tetramers with an angle of 177 degrees between neighboring guanines. The spectral results suggest that it stacks into a quadruplex helical structure. This quadruplex structure decayed to a single tetramer at temperatures >60 degrees C. The Hartree-Fock energies imply that d(GGGA)(5) prefers to form complexes with Na(+) rather than Li(+). The d(GGGA)(5) structure in the presence of monovalent ions is stabilized against thermal denaturation in the order Li(+) < Na(+) < K(+).  相似文献   

2.
Wu T  Zhang XP  Li CH  Bouř P  Li YZ  You XZ 《Chirality》2012,24(6):451-458
Novel copper(II) coordination compounds with chiral macrocyclic imine ligands derived from R-/S-camphor were asymmetrically synthesized and characterized with the aid of chiroptical spectroscopies. Crystal structures of both enantiomers were determined by single crystal X-ray diffraction analysis. Circular dichroism (CD) spectra were analyzed using a simplified exciton model as well as quantum chemical computations. The absolute configuration of the copper(II) coordination compounds determined from CD was found consistent with the crystal data. The copper(II) complexes were further investigated by vibrational CD (VCD) measurement combined with density functional theory calculation. The complex formation was evidenced by spectral shifts of the characteristic bands in the CD and VCD spectra.  相似文献   

3.
Vibrational circular dichroism (VCD) spectroscopy and simultaneous IR absorption measurements are applied to study the interaction of natural calf thymus DNA with Cu2+ ions at room temperature in a Cu2+ concentration range of 0-0.4M (a Cu2+/phosphate molar ratio [Cu]/[P] of 0-0.7). In some important instances, VCD provides more detailed insights than previous IR investigations whereas in several others it leads to the same interpretations. The Cu2+ ions bind to phosphate groups at a low metal concentration. Upon increasing the ion concentration, chelates are formed in which Cu2+ binds to the N7 of guanine (G) and a phosphate group. Detectable only by VCD, significant distortion of most guanine-cytosine (GC) base pairs occurs at a [Cu]/[P] ratio of 0.5 with only a minor affect on adenine-thymine (AT) base pairs, which favors a "sandwich" complex in which a Cu2+ ion is inserted between two adjacent guanines in a GpG sequence. The AT base pairs become significantly distorted when the metal concentration is increased to 0.7 [Cu]/[P]. A number of GC base pairs, which are possibly involved in sandwich complexes, remain stacked and paired even at 0.7 [Cu]/[P], preventing complete strand separation. The DNA secondary structure changes considerably from the standard B-form geometry at a [Cu]/[P] ratio of 0.4 and higher. A further transition to some intermediate conformation that is inconsistent with either the A- or Z-form or a completely denatured state is suggested in agreement with other works. In general, VCD proves to be a reliable indicator of the 3-dimensional structure of the DNA-metal ion complexes, which reveals structural details that cannot be deduced from the IR absorption spectra alone.  相似文献   

4.
The interactions of poly‐L ‐glutamic acid and a cationic porphyrin derivative in aqueous solutions were studied by the combination of vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopies. It was found that non‐covalent interactions between both agents influence the structure of the polymeric matrix and the guest porphyrins and vice versa, but the physico‐chemical properties of the solutions, especially the pH and the relative permittivity of the solvent, play a key role in the structure of the polypeptide part of the formed complexes. It was shown that the interaction with porphyrins prevents the precipitation of poly‐L ‐glutamic acid in aqueous solution at acidic pH. In special conditions, the porphyrins attached to the polypeptide probably possess face‐to‐face interaction as demonstrated by the enhancement of the characteristic ECD signal and the appearance of sidebands on its short and long wavelength sides. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Zhao C  Polavarapu PL 《Biopolymers》2001,62(6):336-340
The vibrational circular dichroism (VCD) and absorption spectra of gramicidin D in three model membranes (dioctadecyldimethylammonium chloride vesicles, dimyristoyl-phosphatidylcholine vesicles, and sodium dodecyl sulfate micelles) are presented. The absorption and VCD spectra suggest that the stable gramicidin D conformation in the model membranes is different from those in organic solvents. The presence of cations does not change the membrane-bound conformation of gramicidin D.  相似文献   

6.
Pasternack RF 《Chirality》2003,15(4):329-332
The size, sign, and profile of induced circular dichroism (CD) features in the Soret region are reliable indicators of the binding modes of porphyrins and metalloporphyrins to DNA. Porphyrins shown (using such CD criteria) to be intercalators in monodispersed DNA duplexes prove extremely useful for the detection and characterization of organized, condensed forms of nucleic acids (psi-condensates). In addition, certain select porphyrin derivatives can form extended assemblies on nonaggregated DNA templates. A combination of CD and resonance light scattering (RLS) measurements allows for sensitive detection and characterization of these porphyrin arrays.  相似文献   

7.
Model peptides based on -(Aib-Ala)(n)-, and (Aib)(n)-Leu-(Aib)(2) sequences, which have varying amounts of 3(10)-helical character, were studied by use of vibrational and electronic circular dichroism (VCD and ECD) and Fourier transform infrared (FTIR) absorption spectroscopies to test the correlation of spectral response and conformation. The data indicate that these peptides, starting from a length of about four to six residues, predominantly adopt a 3(10)-helical conformation at room temperature. The longest model peptides, depending on the series, may evidence some alpha-helical contribution to the spectra, while the shorter ones, with less than six residues, have much less order. The IR absorption spectra (as supported by theory) showed only small frequency changes between 3(10)- and alpha-helices. By contrast, solvent effects are a source of much bigger perturbations. The ECD results show that the intensity ratio for the approximately 222-nm to approximately 208-nm bands, while useful for distinguishing between these two helical types in some sequences, may have a narrower range of application than VCD. However, the VCD data presented here continue to support the proposed discrimination between alpha- and 3(10)-helices based on qualitative amide I and II bandshape differences. The present study shows the intensities of the 3(10)-helical amide I (peak-to-peak) to its amide II VCD to be of the same order and useful for discriminating them from alpha-helices, whose amide I dominates the amide II in intensity. This qualitative result is experimentally independent of the amount of alphaMe-substituted residues in the sequence. These experimental VCD results are consistent in detail with theoretical spectral simulations for Ac-(Ala)(8)-NH(2), Ac-(Aib-Ala)(4)-NH(2), and Ac-(Aib)(8)-NH(2) in 3(10)- and alpha-helical conformations.  相似文献   

8.
The interactions were studied of DNA with the nonhistone chromatin protein HMGB1 and histone H1 in the presence of manganese(II) ions at different protein to DNA and manganese to DNA phosphate ratios by using absorption and optical activity spectroscopy in the electronic [ultraviolet (UV) and electronic circular dichroism ECD)] and vibrational [infrared (IR) and vibrational circular dichroism (VCD)] regions. In the presence of Mn2+, the protein-DNA interactions differ from those without the ions and cause prominent DNA compaction and formation of large intermolecular complexes. At the same time, the presence of HMGB1 and H1 also changed the mode of interaction of Mn2+ with DNA, which now takes place mostly in the major groove of DNA involving N7(G), whereas interactions between Mn2+ and DNA phosphate groups are weakened by histone molecules. Considerable interactions were also detected of Mn2+ ions with aspartic and glutamic amino acid residues of the proteins.  相似文献   

9.
The diastereoselective synthesis of optically active 1,3‐disubstituted tetrahydro‐β‐carbolines using polar protic Pictet–Spengler cyclization of (S)‐tryptophan methyl ester with five aldehydes RCHO (R═CH3, C2H5, C3H7, C4H9, and C6H5) was studied. As an alternate route, the cyclization of (S)‐tryptophan with the same aldehydes and subsequent methylation of the resulting tetrahydro‐β‐carboline carboxylic acids were also performed for comparison. 13C NMR and electronic circular dichroism (ECD) studies and time‐dependent density functional theory ECD calculations data established the relative 1,3 cis/trans and the absolute configuration (1S,3S/ 1R,3S) of the synthesized compounds. The solid‐state and solution ECD study of the prepared compounds, supported by ECD calculation and X‐ray data, afforded a reliable ECD method for the configurational assignment of 1,3‐disubstituted tetrahydro‐β‐carbolines and revealed the stereochemical factors that determine the characteristic ECD data. Chirality 24:789–795, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
《Chirality》2017,29(11):653-662
The primary purpose of this work was to demonstrate the suitability of circular dichroism (CD) spectroscopy in stereochemical studies of α,β ‐unsaturated oximes, with particular emphasis on determination of E and Z geometry of the oxime double bond. As models for this study, O‐phenyl and O‐triphenylmethyl (trityl) oximes of 4‐hydroxy‐2‐methylcyclopent‐2‐en‐1‐one were selected. These model compounds differ in both absolute configuration at C4 carbon atom and E Z configuration of the oxime double bond. The basic dichroic technique applied was electronic circular dichroism (ECD) assisted by quantum‐chemical calculations and vibrational circular dichroism (VCD) for selected cases. Such an approach enabled effective implementation of both goals. Thus, we were able to associate the signs of Cotton effects in the range of 190–240 nm with the absolute configuration at C4 and within 240–300 nm with the E ‐ or Z ‐geometry of the oxime double bond. Within this work, optical activity of the protecting trityl group was also studied towards formation of the propeller‐shaped conformations by using the same combined CD/DFT methodology. As shown, the helical structure of the trityl group has a considerable influence on the ECD spectra. However, the MPM and PMP conformers of the trityl group are in fact almost equally populated in the conformational equilibrium, making it impossible to distinguish them. On the other hand, rotamers of the hydroxyl group at C4 show a decisive impact on the VCD spectra in both phenoxy and trityl oximes.  相似文献   

11.
In this work we have studied ligand-induced secondary structure changes in the small calcium regulatory protein calmodulin (CaM) using vibrational circular dichroism (VCD) spectroscopy. We find that, due to its chiral sensitivity, VCD spectroscopy has increased ability over IR spectroscopy to detect changes in the structure and flexibility of secondary structure elements upon ligand binding. Moreover, we demonstrate that the uniform isotope labeling of CaM with (13)C shifts its amide I' VCD band by about approximately 43 cm(-1) to lower wavenumbers, which opens up a spectral window to simultaneously visualize a bound target protein. Therefore this study also provides the first example of how isotope labeling enables protein-protein interactions to be studied by VCD with good separation of the signals for both isotope-labeled and unlabeled proteins.  相似文献   

12.
13.
Vibrational circular dichroism (VCD) and IR absorption spectra are obtained in a chloroform solution for poly[gamma-((R)-alpha-phenethyl)-L-glutamate] (PRPLG) and poly[gamma-((S)-alpha-phenethyl)-L-glutamate] (PSPLG), whose only structural difference is an opposite chiral center in the side chain. Their characteristic amide A, I, and II bands show VCD patterns quite similar to those of poly[gamma-benzyl-L-glutamate] (PBLG), indicating that the secondary structure of these polypeptides is a right-handed alpha-helix. The VCD spectra in the CH stretching region exhibit different patterns for PRPLG and PSPLG, reflecting the chirality difference in the side chains. This difference is interpreted on the basis of the additivity of optical activity contributions from the main chain conformation and the chirality difference in the side chains. The results indicate that a VCD difference spectrum of the CH stretching region is a useful diagnostic tool for elucidating local chirality differences.  相似文献   

14.
DNA complexes with polypeptides (Lys-Ala-Ala)1)] and (Lys-Ala-Ala)34 have been studied using the methods of thermal melting and circular dichroism. Derivative melting curves of (Lys-Ala-Ala)10 DNA differed substantially from those of (Lys-Ala-Ala)34 prepared either by salt gradient dialysis or by direct mixing. Melting curves of the former complex were unimodal or bimodal with Tm increasing continuously withn input lysin-to-DNA phosphate ratio (r); those of the latter complex consisted of three separate transitions with Tm values almost independent of r. Complete reversibility of binding in the (Lys-Ala-Ala)10-DNA system but a slow redistribution of (Lys-Ala-Ala)34 on DNA at low temperature were found in the redistribution experiments Much faster redistribution from denatured to native DNA occurs at the temperature of melting, contributing to the unusual trimodal melting pattern. Circular dichroism curves are very similar for both complexes and indicate little change of DNA conformation upon polypeptide binding.  相似文献   

15.
Vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT) calculations are used to investigate the keto–enol equilibrium of 3‐(trifluoroacetyl)‐camphor (TFC) and to study the interaction of TFC with chiral amines in deuterated Chloroform. It is shown that the VCD spectra of the enol‐ and keto forms of TFC can clearly be distinguished and that the enol form is favored. By deprotonation of the TFC enol with chiral amines, no indication of a mutual diasteriomeric influence on the VCD spectra induced by transfer of stereochemical information between the chiral ionic species is found, neither experimentally nor theoretically. Chirality 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Polychlorinated biphenyls (PCBs) remain one of the most important groups of environmental contaminants. The fate (transformation) as well as the toxicological implications of the different metabolism steps are subject to considerable debate. The aim of this study is to start a comprehensive investigation of atropisomeric PCB metabolites, i.e., hydroxy, methoxy, methylthionyl, and methylsulfonyl PCBs in different biota. For this purpose, enantioselective semipreparative liquid chromatography is used to obtain pure enantiomers of PCB metabolites. Electronic circular dichroism (UV-CD) and vibrational circular dichroism (VCD) in combination with computational techniques were applied to determine their absolute structures. Approximately 18-25 mg of each enantiomer of the following metabolites were obtained using semipreparative HPLC on beta-cyclodextrin-based columns: 4-MeO-CB149, 4-MeS-CB149, 4-MeSO2-CB149, 3-MeS-CB149, and 3-MeSO2-CB149. The enantiomeric purity of the separated enantiomers was in the range of 95.0-99.9%. Rotational angles and absolute configurations were also determined. This study establishes a sound method for future preparation and absolute structure determination of compounds belonging to the same class.  相似文献   

17.
Two couples of enantiomeric platinum(II) complexes: Pt(L1a)Cl ( 1a ), Pt(L1b)Cl ( 1b ) and Pt(L1a)(C ≡ C ? Ph) ( 2a ), Pt(L1b)(C ≡ C ? Ph) ( 2b ) (L1a = (+)‐1,3‐di‐(2‐(4,5‐pinene)pyridyl)benzene, L1b = (?)‐1,3‐di‐(2‐(4,5‐pinene)pyridyl)benzene) were synthesized and characterized. Their absolute configurations were determined by single crystal X‐ray diffraction and further verified by circular dichroism (CD) spectra (including electronic circular dichroism [ECD] and vibrational circular dichroism [VCD]). These complexes show interesting mechanoluminescence and/or vapoluminescence due to crystalline‐to‐amorphous transformation. The crystalline solids, grinding‐induced amorphous powders, and vapor‐induced amorphous powders of complexes 2a and 2b were comparatively investigated by solid‐state ECD and VCD spectra. The transformation from crystalline solids to amorphous powders was accompanied by significant variances of the spectral feature in both ECD and VCD spectra. Chirality 25:384–392, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Ultraviolet (UV) and infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy were used to study conformational transitions in the double-stranded poly(rA). poly(rU) and its components-single-stranded poly(rA) and poly(rU) in buffer solution (pH 6.5) with 0.1M Na+ and different Mg2+ and Cd2+ (10(-6) to 10(-2) M) concentrations. Transitions were induced by elevated temperature that changed from 10 up to 96 degrees C. IR absorption and VCD spectra in the base-stretching region were obtained for duplex, triplex, and single-stranded forms of poly(rA) . poly(rU) at [Mg2+],[Cd2+]/[P] = 0.3. For single-stranded polynucleotides, the kind of conformational transition (ordering --> disordering --> compaction, aggregation) is conditioned by the dominating type of Me2+-polymer complex that in turn depends on the ion concentration range. The phase diagram obtained for poly(rA) . poly(rU) has a triple point ([Cd2+] approximately 10(-4)M) at which the helix-coil (2 --> 1) transition is replaced with a disproportion transition 2AU --> A2U + poly(rA) (2 --> 3) and the subsequent destruction of the triple helix (3 --> 1). The 2 --> 1 transitions occur in the narrow temperature interval of 2 degrees -5 degrees . Unlike 2 --> 1 and 3 --> 1 melting, the disproportion 2 --> 3 transition is a slightly cooperative one and observed over a wide temperature range. At [Me2+] approximately 10(-3) M, the temperature interval of A2U stability is not less than 20 degrees C. In the case of Cd2+, it increases with the rise of ion concentration due to the decrease of T(m) (2-->3). The T(m) (3-->1) value is practically unchanged up to [Cd2+] approximately 10(-3)M. Differences between diagrams for Mg(2+) and Cd2+ result from the various kinds of ion binding to poly(rA).poly-(rU) and poly(rA).  相似文献   

19.
Porphyrins are promising chromophores for the investigation of the still unexplored area of 3-dimensional structural studies of proteins by using the exciton coupled circular dichroism (CD) method. The synthesis, conformational characterization by FTIR absorption and (1)H-NMR, and CD properties are described for a model bis-porphyrin system based on homooligo-[L-(alphaMe)Val](n) peptides as rigid spacers. In particular, the coupled CD phenomenon is experimentally detected, the intensity of which is modulated by the interchromophoric distance. These results extend and integrate those already reported with steroid, dimeric steroid, and brevetoxin bridges.  相似文献   

20.
It has been recently shown that enantiomers of the helicoidal paddlewheel complex [Co3(dpa)4(CH3CN)2]2+ (dpa = the anion of 2,2′-dipyridylamine) can be resolved using the chiral [As2(tartrate)2]2− anion (AsT) and that these complexes demonstrate a strong chiroptical response in the ultraviolet-visible and X-ray energy regions. Here we report that the nickel congener, [Ni3(dpa)4(CH3CN)2]2+, can likewise be resolved using AsT. Depending on the stereochemistry of the enantiopure AsT anion, one or the other of the trinickel enantiomers crystallize from CH3CN and diethyl ether in space group P4212 as the (NBu4)2[Ni3(dpa)4(CH3CN)2](AsT)2·[solvent] salt. After resolution, the AsT salts were converted into the PF6 salts by anion exchange, with retention of the chirality of the trinickel complex. The enantiopure [Ni3(dpa)4(CH3CN)2](PF6)2·2CH3CN and [Co3(dpa)4(CH3CN)2](PF6)2·CH3CN·C4H10O compounds crystallize in space groups C2 and P21, respectively. Both the Ni(II) and Co(II) complex cations are stable towards racemization in CH3CN. Vibrational circular dichroism (VCD) data obtained in CD3CN demonstrate the expected mirror image spectra for the enantiomers, the observed peaks arising from the dpa ligand. The VCD response is significant, with Δε values up to 6 Lmol−1 cm−1 and vibrational dissymmetry factors on the order of 10−3. Density functional theory calculations well reproduce the experimental spectra, showing little difference between the peak position, sign, and intensity in the VCD for the cobalt and nickel complexes. These results suggest that VCD enhancement of these peaks is unlikely, and their remarkable intensity may be due to their rigid helicoidal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号