首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin, cortisol, heart rate, blood pressure, spontaneous motor activity, and body temperature follow stable circadian rhythms in healthy individuals. These circadian rhythms may be influenced or impaired by the loss of external zeitgebers during analgosedation, critical illness, continuous therapeutic intervention in the intensive care unit (ICU), and cerebral injury. This prospective, observational, clinical study examined 24 critically ill analgo‐sedated patients, 13 patients following surgery, trauma, or acute respiratory distress (ICU), and 11 patients with acute severe brain injury following trauma or cerebral hemorrhage (CCI). Blood samples for the determination of melatonin and cortisol were obtained from each patient at 2 h intervals for 24 h beginning at 18:00 h on day 1 and ending 16:00 h on day 2. Blood pressure, heart rate, body temperature, and spontaneous motor activity were monitored continuously. Level of sedation was assessed using the Ramsey Sedation Scale. The severity of illness was assessed using the APACHE‐II‐score. The time series data were analyzed by rhythm analysis with the Chronos‐Fit program, using partial Fourier series with up to six harmonics. The 24 h profiles of all parameters from both groups of patients were greatly disturbed/abolished compared to the well‐known rhythmic 24 h patterns in healthy controls. These rhythm disturbances were more pronounced in patients with brain injury. The results of this study provide evidence for a pronounced disturbance of the physiological temporal organization in ICU patients. The relative contribution of analgosedation and/or brain injury, however, is a point of future investigation.  相似文献   

2.
Seven clinically healthy, nondiabetic (ND) and four Type II diabetic (D) men were assessed for circadian rhythms in oxidative “stress markers.” Blood samples were collected at 3h intervals for ∼27 h beginning at 19:00h. Urine samples were collected every 3 h beginning with the 16:00h-19:00h sample. The dark (sleep) phase of the light-dark cycle extended from 22:30h to 06:30h, with brief awakening for sampling at 01:00h and 04:00h. Subjects were offered general hospital meals at 16:30h, 07:30h, and 13:30h (2400 cal in total/24 h). Serum samples were analyzed for uric acid (UA) and nitrite (NO) concentrations, and urine samples were assayed for 8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA), and 8-isoprostane (ISP). Data were analyzed statistically both by the population multiple-components method and by the analysis of variance (ANOVA). The 24h mean level of UA and NO was greater in D than in ND subjects (424 vs. 338 μmol/L and 39.2 vs. 12.7 μM, respectively). A significant circadian rhythm in UA (p=0.001) and NO (p=0.048) was evident in ND but not in D (p=0.214 and 0.065). A circadian rhythm (p=0.004, amplitude=8.6 pmol/kgbw/3h urine vol.) was also evident in urine 8-OHdG of ND but not of D. The 24h mean levels of ND and D were comparable (76.8 vs. 65.7 pmol/kgbw/3h urine vol.). No circadian rhythm by population multiple-components was evident in MDA and ISP levels of ND subjects, or in 8-OHdG, MDA, and ISP in D. However, a significant time-effect was demonstrated by ANOVA in all variables and groups. The 24h mean of MDA and ISP in D was significantly greater than in ND (214 vs. 119 nmol/3h urine vol. and 622 vs. 465 ng/3h urine vol.). The peak concentrations of the three oxidative “stress markers” in urine, like those of serum NO, occurred early in the evening in both groups of men. This observation suggests a correlation between increased oxidative damage and increased rate of anabolic-catabolic events as evidenced by similarities in the timing of peak NO production and in parameters relevant to metabolic functions.  相似文献   

3.
24 h and ultradian rhythms of blood pressure (BP) have been previously shown to be disorganized in nocturnal hypertensive subjects. The present study was undertaken to further analyze the ultradian and circadian BP rhythm structure in sleep-time hypertensive subjects with normal or elevated awake-time BP levels. Fourier analysis was used to fit 24, 12, 8, and 6 h curves to mean BP as well as heart rate (HR) time series data derived from 24 h ambulatory blood pressure monitoring. Awake and sleep periods were defined according to individual sleep diaries. Awake-time hypertension was defined as diurnal systolic (SBP) and/or diastolic BP (DBP) means ≥135/85 mmHg. Sleep-time hypertension was defined as nocturnal SBP and/or DBP means ≥120/70 mmHg. The sample included 240 awake-time normotensive subjects (180 sleep-time normotensives and 60 sleep-time hypertensives) and 138 untreated awake-time hypertensive subjects (31 sleep-time normotensives and 107 sleep-time hypertensives). The amplitude and integrity (i.e., percent rhythm) of the 24 and 12 h BP rhythms were lower in the sleep-time hypertensive subjects and higher in the awake-time hypertensive subjects. However, no differences were detected when the integrity and amplitude of the 6 and 8 h mean BP rhythms were analyzed. The sleep-time hypertensive group showed significantly higher 24 h BP rhythm acrophase variability. No differences could be found in any of the HR rhythm parameters. Altogether, the findings suggest a disorganization of the BP circadian rhythm in sleep-time hypertensives that results in reduced 24 h rhythm amplitude and integrity that could be related to cardiovascular risk.  相似文献   

4.
Cancer patients may exhibit normal or altered circadian rhythms in tumor and healthy tissues. Four rhythms known to reflect circadian clock function were studied in 18 patients with metastatic colorectal cancer and good performance status. Rest-activity was monitored by wrist actigraphy for 72 h before treatment, and its circadian rhythm was estimated by an autocorrelation coefficient at 24h and a dichotomy index that compared the activity level when in and out of bed. Blood samples (9-11 time points, 3-6 h apart) were drawn on day 1 and day 4 of the first course of chronochemotherapy (5-fluorouracil: 800 mg/m2/day; folinic acid: 300 mg/m2/day; oxaliplatin: 25 mg/m2/day). Group 24h rhythms were validated statistically for plasma concentrations of melatonin, 6-alpha-sulfatoxymelatonin, and cortisol and for lymphocyte counts. Significant individual 24h rhythms were displayed in melatonin by 15 patients, cortisol by seven patients, lymphocytes by five patients, and prominent circadian rhythms in activity were displayed by 10 patients; only one patient exhibited significant rhythms in all the variables. The results suggest the rhythms of melatonin, cortisol, lymphocytes, and rest/activity reflect different components of the circadian system, which may be altered differently during cancer processes. Such 24h rhythm alterations appeared to be independent of conventional clinical factors.  相似文献   

5.
Cancer patients may exhibit normal or altered circadian rhythms in tumor and healthy tissues. Four rhythms known to reflect circadian clock function were studied in 18 patients with metastatic colorectal cancer and good performance status. Rest–activity was monitored by wrist actigraphy for 72 h before treatment, and its circadian rhythm was estimated by an autocorrelation coefficient at 24h and a dichotomy index that compared the activity level when in and out of bed. Blood samples (9–11 time points, 3–6 h apart) were drawn on day 1 and day 4 of the first course of chronochemotherapy (5-fluorouracil: 800 mg/m2/day; folinic acid: 300 mg/m2/day; oxaliplatin: 25 mg/m2/day). Group 24h rhythms were validated statistically for plasma concentrations of melatonin, 6-α-sulfatoxymelatonin, and cortisol and for lymphocyte counts. Significant individual 24h rhythms were displayed in melatonin by 15 patients, cortisol by seven patients, lymphocytes by five patients, and prominent circadian rhythms in activity were displayed by 10 patients; only one patient exhibited significant rhythms in all the variables. The results suggest the rhythms of melatonin, cortisol, lymphocytes, and rest/activity reflect different components of the circadian system, which may be altered differently during cancer processes. Such 24h rhythm alterations appeared to be independent of conventional clinical factors.  相似文献   

6.
Traumatic brain injury (TBI) generally influences circadian rhythms and has been implicated changes in circadian rhythm. Whether TBI-induced changes in circadian rhythm may affect the prognosis or recovery from TBI remains to be investigated. Sixty-two patients with TBI were continuously monitored for intracranial pressure (ICP) during the first 24 hours after the implantation of ICP monitor. The data from each patient were analyzed using the least squares fit of a 24-h cosine function by single cosinor method. Parameters of circadian A (Amplitude)/M (MESOR) were used to evaluate the circadian rhythm of the patients. Student’s t-test and Pearson’s chi-squared test were utilized to analyze the differences between good prognosis group and poor prognosis. A linear regression analysis was then applied to calculate the correlation between circadian A/M of ICP and Glasgow Coma Scale (GCS) before discharge, the Extended Glasgow Outcome Scale (GOS-E), the dosage of mannitol, and time spent in the intensive care unit (ICU), respectively. The results demonstrated that circadian A/M of patients’ ICP exhibited a positive correlation with GCS scores taken before discharge, GOS-E scores, and was negatively correlated with the amount of mannitol, and time spent in the ICU. We conclude that changes in the ICP circadian rhythm in TBI patients could reflect an internal signal of brain damage and, therefore, may be useful to predict a patient’s prognosis and recovery from TBI.  相似文献   

7.
The present study was conducted to evaluate the effect of a 7 d continuous infusion of ropivacaine on the 24 h rhythms of body temperature, heart rate, and locomotor activity. After an initial 7 d baseline, rats were randomly divided into two groups of 4 rats each to receive ropivacaine or saline via an osmotic pump for 7 consecutive days. The pumps were removed thereafter and observed during a 7 d recovery span. The studied circadian rhythms were measured by radiotelemetry throughout each of the 7 d periods. An additional group of 4 rats was studied under the same experimental conditions to assess the plasma levels of ropivacaine on days 3 and 8 following pump implantation. Our results indicate that ropivacaine does not induce loss of the circadian rhythms of body temperature, heart rate, or locomotor activity; a prominent period of 24 h was found for all variables in all animals, before, during, and after ropivacaine treatment. However, ropivacaine treatment did modify some characteristics of the rhythms; it increased the MESOR (24 h mean) of the heart rate and locomotor activity rhythms and advanced the acrophase (peak time) of the locomotor activity circadian rhythm. The present study indicates that the circadian rhythms of heart rate and locomotor activity are modified after continuous infusion of ropivacaine, which is of particular interest, given the potential cardiotoxicity of this local anesthetic agent.  相似文献   

8.
Fatigue is often reported after long-haul airplane flights. Hypobaric hypoxia, observed in pressurized cabins, may play a role in this phenomenon by altering circadian rhythms. In a controlled cross-over study, we assessed the effects of two levels of hypoxia, corresponding to cabin altitudes of 8000 and 12,000 ft, on the rhythm of core body temperature (CBT), a marker of circadian rhythmicity, and on subjective sleep. Twenty healthy young male volunteers were exposed for 8 h (08:00-16:00 h) in a hypobaric chamber to a cabin altitude of 8000 ft and, 4 weeks later, 12,000 ft. Each subject served as his own control. For each exposure, CBT was recorded by telemetry for two 24 h cycles (control and hypoxic exposure). After filtering out nonphysiological values, the individual CBT data were fitted with a five-order moving average before statistical group analysis. Sleep latency, sleep time, and sleep efficiency were studied by sleep logs completed every day in the morning. Our results show that the CBT rhythm expression was altered, mainly at 12,000 ft, with a significant increase of amplitude and a delay in the evening decline in CBT, associated with alterations of sleep latency. Mild hypoxia may therefore alter circadian structure and result in sleep disturbances. These results may explain in part the frequent complaints of prolonged post-flight fatigue after long flights, even when no time zones are crossed.  相似文献   

9.
The effects of vinorelbine (VRL) on the circadian rhythms in body temperature and locomotor activity were investigated in unrestrained B6D2F1 mice implanted with radio-telemetry transmitters. A single intravenous VRL dose (24 or 12 mg/kg) was given at 7 h after light onset (HALO), a time of high VRL toxicity, and resulted in transient suppression of temperature and activity circadian rhythms in mice kept in light-dark (LD) 12h:12h. Such suppression was dose-dependent. It occurred within 1-5 d after VRL dosing. Recovery of both rhythms was partially complete within 5 d following the high dose and within 2 or 3 d after the low dose and was not influenced by suppression of photoperiodic synchronization by housing in continuous darkness. Moreover, VRL induced a dose-dependent relative decrease in amplitude and phase shift of the temperature circadian rhythm. The mesor and amplitude of the activity rhythm were markedly reduced following the VRL administration. The relevance of VRL dosing time was studied in mice housed in LD 12h:12h. Vinorelbine was injected weekly (20 mg/kg/injection) for 3 wk at 6 or 18 HALO. Vinorelbine treatment ablated the rest-activity and temperature rhythms 3-6 d after each dose, with fewer alterations after VRL dosing at 18 HALO compared to 6 HALO, especially for the body temperature rhythm. There was at least partial recovery 1 wk after dosing, suggesting the weekly schedule of drug treatment is acceptable for therapeutic purposes. Our findings demonstrate that VRL can transiently, yet profoundly, alter circadian clock function. Vinorelbine-induced circadian dysfunction may contribute to the toxicokinetics of this and possibly other anticancer drugs.  相似文献   

10.
Stroke is the culmination of a heterogeneous group of cerebrovascular diseases that is manifested as ischemia or hemorrhage of one or more blood vessels of the brain. The occurrence of many acute cardiovascular events—such as myocardial infarction, sudden cardiac death, pulmonary embolism, critical limb ischemia, and aortic aneurysm rupture—exhibits prominent 24 h patterning, with a major morning peak and secondary early evening peak. The incidence of stroke exhibits the same 24 h pattern. Although ischemic and hemorrhagic strokes are different entities and are characterized by different pathophysiological mechanisms, they share an identical double-peak 24 h pattern. A constellation of endogenous circadian rhythms and exogenous cyclic factors are involved. The staging of the circadian rhythms in vascular tone, coagulative balance, and blood pressure plus temporal patterns in posture, physical activity, emotional stress, and medication effects play central and/or triggering roles. Features of the circadian rhythm of blood pressure, in terms of their chronic and acute effects on cerebral vessels, and of coagulation are especially important. Clinical medicine has been most concerned with the prevention of stroke in the morning, when population-based studies show it is of greatest risk during the 24 h; however, improved protection of at-risk patients against stroke in the early evening, the second most vulnerable time of cerebrovascular accidents, has received relatively little attention thus far.  相似文献   

11.
The role of endogenous circadian rhythmicity in autonomic cardiac reactivity to different stressors was investigated. A constant routine protocol was used with repeated exposure to a dual task and a cold pressor test. The 29 subjects were randomly divided into two groups in order to manipulate prior wakefulness. Group 1 started at 09:00 h immediately after a monitored sleep period, whereas group 2 started 12 h later. Measures of interbeat intervals (IBI), respiratory sinus arrythmia (RSA, a measure of parasympathetic activity), pre-ejection period (PEP, a measure of sympathetic activity), as well as core body temperature (CBT) were recorded continuously. Multilevel regression analyses (across-subjects) revealed significant (mainly 24 h) sinusoidal circadian variation in the response to both stressors for IBI and RSA, but not for PEP. Individual 24 + 12 h cosine fits demonstrated a relatively large interindividual variation of the phases of the IBI and RSA rhythms, as compared to that of the CBT rhythm. Sinusoidal by group interactions were found for IBI and PEP, but not for RSA. These findings were interpreted as an indication for endogenous circadian and exogenous parasympathetic (vagal) modulation of cardiac reactivity, while sympathetic reactivity is relatively unaffected by the endogenous circadian drive and mainly influenced by exogenous factors.  相似文献   

12.
Circadian rhythms impact many physiological functions that may affect drug pharmacological response. Ketamine is a dissociative agent commonly used for surgical anesthesia in rats. The aim of the present study was to analyze the central nervous system (CNS) depression and lethality of ketamine injected intraperitoneally at different times during the 24 h. The study was conducted in October 2001, spring in the Southern hemisphere. Female prepuberal Sprague-Dawley rats synchronized to a 12h light:12h dark cycle (light, 07:00h-19:00h) were studied. Ketamine (40 mg/kg) was administered to one of six different clock-time treatment groups (n=6-7 rats each). Duration of latency period, ataxia, loss of righting reflex (LRR), post-LRR ataxia, and total pharmacological response were determined by visual assessment. To investigate acute toxicity, ketamine lethal dose 50 (148.0 mg/kg) was also administered as a single injection to six different treatment-time groups of rats. Significant temporal differences and circadian rhythms were detected in drug-induced post-LRR ataxia and total pharmacological response duration. The longest pharmacological response occurred in rats injected during the light (rest) phase and the shortest response in the dark (activity) phase. No circadian rhythm was detected in acute toxicity. The study findings indicate that the duration of CNS depression of ketamine in rats exhibits circadian rhythmic variation.  相似文献   

13.
In a prospective study, 15,110 childhood traumas were recorded by the Pediatric Surgery Service (CHUV, Lausanne) between January 1, 1990 and December 31, 1997. The exact clock hour when the injury occurred and other germane data were obtained. Time series thus obtained were analyzed by several statistical (ANOVA, cosinor, χ2, Table Curve, etc.) methods. High statistically significant circadian patterns were detected with a trough at night—almost no traumas/hour (t/h), and a peak in the afternoon (∼16:00h)—9.3±0.4 (SD) t/h. Such 24h variation was validated for the whole sample for the entire 8yr study span as well as the data of each year. Neither gender- nor age-related differences in the 24h pattern were detected between children under 5 yr of age, who have not yet attended school and children from 5 to 16 yr of age, who attend school. Small but statistically significant differences in the 24h patterns were observed when categorized by the type of activity associated with the trauma and the place of trauma occurrence. The great stability of the 24h pattern in childhood trauma over the 8yr study span suggests an endogenous origin in addition to the role presumably played by environmental factors. Periods of 12 and 8 h were also detected in the time series. The afternoon peak time of childhood traumas differs from that of adults, which is located ∼04:00h in rotating shift workers and automobile drivers and 06:00-08:00h in adult day-workers. The validation of a circadian pattern in childhood traumas with an afternoon peak should be taken into account in the design of children's preventative injury programs.  相似文献   

14.
Aging is characterized by changes in the circadian rhythms of melatonin, serotonin, and sleep/wakefulness, alterations that affect sleep quality. The authors studied the circadian rhythms of serotonin and melatonin in young and old ringdoves (Streptopelia risoria) (2-3 and 10-12 yrs old, respectively), animals that are characterized by being monophasic and active by day, like humans. The aim was to correlate the indole rhythms with the animals' activity/rest periods. The animals were kept under a 12:12 h light/dark cycle, fed ad libitum, and housed in separate cages equipped for activity recording. Activity pulses were recorded with one actometer per animal (two perpendicular infrared transmitters) and were logged every 15 min by a computer program (DAS 16) throughout the experiment. Melatonin was measured by radioimmunoassay and serotonin by ELISA at intervals of 3 h (from 09:00 to 18:00 h) and 1 h (from 21:00 to 06:00 h), respectively. The results showed a reduction in nocturnal vs. diurnal activity of 89% and 61% in the young and old animals, respectively, with 100% considered to be the diurnal activity of each group. The amplitude of a cosine function fit to the melatonin concentrations of the old animals was half that of the young birds. The acrophase and nadir were at 02:00 and 14:00 h in the young and 01:00 and 13:00 h in the old animals, respectively. The amplitude of the corresponding cosine function fit to the serotonin concentrations in the old birds was one-third that of the young animals. The acrophase and nadir were at 15:00 and 03:00 h in the young and 16:00 and 04:00 h in the old animals, respectively. For both melatonin and serotonin, the concentrations in the young animals were significantly higher than in the old at most of the measurement times. There was a clear negative correlation between the circadian rhythms of activity and the serum melatonin levels in both young and old animals. The equivalent correlation for serotonin was positive, and stronger in the case of the young animals. The results suggest a possible relationship between the observed decline in the amplitude of the old animals' melatonin and serotonin rhythms and the lower percentage reduction in their nocturnal relative to diurnal activity pulses compared to the young animals. In conclusion, the circadian rhythms of melatonin and serotonin undergo alterations with age that could be involved in the changes in age-associated sleep.  相似文献   

15.
Background: Circadian rhythms in plasma concentrations of many hormones and cytokines determine their effects on target cells. Methods: Circadian variations were studied in cortisol, melatonin, cytokines (basic fibroblast growth factor [bFGF], EGF, insulin-like growth factor-1 [IGF-1]), and a cytokine receptor (insulin-like growth factor binding protein-3 [IGFBP-3]) in the plasma of 28 patients with metastatic breast cancer. All patients followed a diurnal activity pattern. Blood was drawn at 3h intervals during waking hours and once during the night, at 03:00. The plasma levels obtained by enzyme-linked immunoassay (ELISA) or radioimmunoassay (RIA) were evaluated by population mean cosinor (using local midnight as the phase reference and by one-way analysis of variance (ANOVA). Results: Cortisol and melatonin showed a high-amplitude circadian rhythm and a superimposed 12h frequency. bFGF showed a circadian rhythm with an acrophase around 13:00 with a peak-to-trough interval (double amplitude) of 18.2% and a superimposed 12h frequency. EGF showed a circadian rhythm with an acrophase around 14:20, a peak-to-trough interval of 25.8%, and a superimposed 12h frequency. IGF-1 showed a high value in the morning, which is statistically different t test) from the low value at 10:00, but a regular circadian or ultradian rhythm was not recognizable as a group phenomenon. IGFBP-3 showed a low-amplitude (peak-to-trough difference 8.4%) circadian rhythm with the acrophase around 11:00 and low values during the night. Conclusions: (1) Circadian periodicity is maintained in hospitalized patients with metastatic breast cancer. (2) Ultradian (12h) variations were superimposed on the circadian rhythms of the hormones and several of the cytokines measured. (3) Studies of hormones and cytokines in cancer patients have to take their biologic rhythms into consideration. (4) The circadian periodicity of tumor growth stimulating or restraining factors raises questions about circadian and/ or ultradian variations in the pathophysiology of breast cancer. (Chronobiology International, 18(4), 709-727)  相似文献   

16.
Eight healthy subjects exercised at 90 watts on a cycle ergometer on four occasions, at times close to the minimum, maximum rate of rise, maximum, and maximum rate of fall of their resting core temperature. The duration of exercise was determined by the time taken for the core (rectal) temperature to reach an equilibrium value. Forearm skin blood flow and temperature were measured regularly during the exercise, as were heart rate and ratings of perceived exertion. Sweat loss was calculated by weighing the subjects nude before and after the exercise. The rise of heart rate was not significantly different at the four times of exercise, though the rating of perceived exertion was greatest at 05:00 h. Resting core temperatures showed a significant circadian rhythm at rest (the timing of which confirmed that exercise was being performed at the required times), but the amplitude of this rhythm was decreased significantly by the exercise. The initial rate of rise of core temperature, and the total rise from the resting to the equilibrium value, were both inversely proportional to resting temperature. The time-course of the rise was accurately described by a negative-exponential model, but this model gave no evidence that the kinetics of the equilibration process depended upon the time of day. The thermoregulatory responses to the rise in core temperature—the amount of total sweat loss and rises in forearm skin blood flow and temperature—differed according to the time of exercise. In general, the responses were significantly greater at 17:00 h compared with 05:00 h, and at 23:00 h compared with 11:00 h. The results accord with predictions made on the basis of previous work by us in which core temperature rhythms have been separated into components due to the endogenous body clock and due to the direct effects of spontaneous activity. The results are discussed in terms of the ecological implications of the differing capabilities of humans to deal with heat loads produced by spontaneous activity or mild exercise at different phases of the circadian rhythm of resting core temperature.  相似文献   

17.
To explain the complex mechanism of environmental influence along with internal hormonal (factors) milieu on daily variations in the circulating levels of melatonin, testosterone, thyroxine and corticosterone were analyzed with the help of inferential statistics (Cosinor rhythmometry) in a seasonally breeding tropical rodent, F. pennanti during the reproductively active (RAP) and inactive phases (RIP). Plasma melatonin, thyroxine and corticosterone levels exhibited a significant circadian oscillation during both the active and inactive phases of the annual reproductive cycle. Melatonin showed higher amplitude during RIP in the circulating plasma. Testosterone presented a peak level during evening hours (16:00 - 18:00 h) during RAP only. The phase of thyroxine was noted ∼09:76 h and ∼10.35 h during active and inactive phases, respectively. Corticosterone showed a peak level at ∼12.00 h during both phases of the reproductive cycle. Further, in this tropical rodent, the minimum difference in photoperiod (∼3 - 4 hours) and maximum variation in temperature (max. 18°C - min. 10°C during RIP and max. 45°C - min. 32°C during RAP) and humidity (85% during RIP and 35% during RAP) regulated the diurnal rhythm of circulating melatonin circadian rhythm by ∼1 hour phase advance during RIP. In conclusion, the studied hormonal rhythms may be part of an integrative system to coordinate reproduction and physiological processes successfully with environmental factors.  相似文献   

18.
Differences in the activity-rest behavior of preterm and full-term infants provide an important contribution to the analysis of the ontogeny of circadian rhythms. In this study, we recorded the activity-rest behavior of 17 preterm and 8 full-term infants at the approximate age of 20 months over an average of 10 days by means of actigraphic monitoring (Actiwatch®, Cambridge Neurotechnology Ltd.). At the same time, the parents of the infants kept a daily diary. The activity-rest rhythm, the nighttime sleep duration, the daytime rest duration, as well as the sleep quality of the infants were analyzed. Preterm and full-term infants at the age of 20 months show a circadian rhythm with a period length between 23 h 32 min (23:32 h) and 24 h 23 min (24:23 h). It can be concluded that the preterm and full-term infants all reached a vital developmental step by showing the dominant circadian rhythm in the spectrum. The daytime rest duration of preterm infants is significantly shorter than that of full-term infants. The sleep quality of preterm infants is significantly lower than that of full-term infants, which means that the preterm infants have a larger percentage of less restful nighttime sleep. In other studies preterm infants show an over-proportional frequency of attention deficit hyperactivity disorder (ADHD). For this reason, future analyses should reveal whether or not actigraphic monitoring is a suitable means for an early identification of activity-rest behavior in children who may develop ADHD.  相似文献   

19.
Coste O  Beers PV  Bogdan A  Charbuy H  Touitou Y 《Steroids》2005,70(12):803-810
Fatigue is often reported after long duration flights. Mild hypobaric hypoxia caused by pressurisation may be involved in this effect through disruption of circadian rhythms, independently of the number of time zones crossed. In this controlled crossover study, we assessed the effects of two levels of hypoxia equivalent to 8000 and 12,000 ft on the circadian rhythm of plasma cortisol, a marker of the circadian time structure. Sixteen healthy young male volunteers (23-39 years) were exposed in a hypobaric chamber for 8 h (08:00-16:00 h) to 8000 ft, followed 4 weeks later to 12,000 ft. Plasma cortisol was assayed during two 24-h cycles (control and hypoxic exposure) every 2h in all subjects. We found a significant change in the pattern of cortisol secretion during both hypoxic exposures, with an initial fall in cortisol followed by a transient rebound, whereas the phase and the 24-h mean level remained unchanged. The change in cortisol pattern followed the alterations in autonomic balance assessed by heart rate variability (HRV) spectral analysis. The normalised high frequencies and the low-to-high frequencies ratio showed a significant shift toward sympathetic dominance with some differences in time course for both altitudes studied. HRV analysis improved the interpretation of cortisol 24-h profiles. Our data, which strongly suggest that prolonged mild hypoxia alters the expression of cortisol circadian rhythm, should be taken into account to interpret secretory rhythm changes after transmeridian flights.  相似文献   

20.
In female hamsters, the daily rhythm of LH appeared on the 15th or 16th day after birth with a peak occurring at about 16:00 h (14L:10D, lights on 06:00 h). Progesterone concentrations increased and became rhythmic a few days later. In serum samples collected at 14, 16, 18, 20, 25, 30, 40 and 60-62 days of age between 13:00 and 23:00 h, significant rhythms of serum cortisol and corticosterone concentrations were not detected before 25 days of age; furthermore, the phase of the rhythms did not stabilize to the adult pattern until about 40 days of age. As in the adult, significant rhythms were present in both sexes and the levels of cortisol were greater than those of corticosterone. Injection of pig ACTH (50 i.u./kg body wt, i.p.) significantly increased serum cortisol by 10 days of age, but corticosterone did not respond until 25 days of age. Thus, for cortisol at least, the appearance of 24-h rhythms in the serum is probably not dependent on the ability of the adrenal to respond to ACTH. Ovariectomy had no effect on the late afternoon surge of serum cortisol; similarly, adrenalectomy of immature females did not abolish the surge of LH. Ovariectomy did not alter the daily rhythm of pineal melatonin content and pinealectomy had no effect on the daily afternoon surge of LH. These results demonstrate functional independence of circadian rhythms in the pituitary-gonadal axis and the pituitary-adrenal axis of the immature hamster and also independence of daily rhythms of pineal melatonin and pituitary release of LH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号