首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular fatty acid binding protein (Ex-FABP) is a 21 kDa lipocalin specifically binding fatty acids, expressed during chicken embryo development in hypertrophic cartilage, in muscle fibers and in blood granulocytes. In chondrocyte and myoblast cultures Ex-FABP expression is increased by inflammatory agents and repressed by anti-inflammatory agents. In adult cartilage Ex-FABP is expressed only in pathological conditions such as in dyschondroplastic and osteoarthritic chickens. The possible mammalian counterpart is the Neu-related lipocalin (NRL), a lipocalin overexpressed in rat mammary cancer; NRL is homologous to the human neutrophil gelatinase associated lipocalin (NGAL) expressed in granulocytes and in epithelial cells in inflammation and malignancy and to the Sip24 (super-inducible protein 24), an acute phase lipocalin expressed in mouse after turpentine injection. Immunolocalization and in situ hybridization showed that NRL/NGAL is expressed in hypertrophic cartilage, in forming skeletal muscle fibers and in developing heart. In adult cartilage NRL/NGAL was expressed in articular cartilage from osteoarthritic patients and in chondrosarcoma. Moreover, NRL was induced in chondrocyte and myoblast cultures by an inflammatory agent. We propose that these lipocalins (Ex-FABP, NRL/NGAL, Sip24) represent stress proteins physiologically expressed in tissues where active remodeling is taking place during development and also present in tissues characterized by an acute phase response due to pathological conditions.  相似文献   

2.
3.
4.
Ex-FABP, extracellular fatty acid binding protein, is a 21 kDa lipocalin expressed in hypertrophic cartilage, muscle and heart during chick embryo development and in granulocytes. Ex-FABP synthesis was increased in chondrocyte and myoblast cultures by inflammatory agents (LPS; IL6) and repressed by antiinflammatory agents. Expression of Ex-FABP and specific gelatinases is paralleled in hypertrophic cartilage; LPS specifically induced high molecular weight gelatinase ( > 200 kDa). LPS-treated hypertrophic chondrocytes showed increased chemotactic activity for endothelial cells paralleled by increased expression of transferrin. A high amount of Ex-FABP was expressed in adult pathological cartilage both in dyschondroplastic and osteoarthritic chickens. Controls were negative. Ex-FABP could represent a stress protein physiologically expressed in tissues where active remodelling is taking place during development and in tissues characterized by an acute phase response due to pathological conditions. We also suggest that during endochondral bone formation other responses characteristic of a local inflammatory status, such as gelatinase production and angiogenic factor secretion, are "physiologically" activated.  相似文献   

5.
6.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

7.
Activation of toll-like receptors (TLR) in articular chondrocytes has been reported to increase the catabolic compartment, leading to matrix degradation, while the main consequence of TLR activation in monocytic cells is the expression and secretion of components of the innate immune response, particularly that of inflammatory cytokines. The objective of the work reported here was to obtain a more complete picture of the response repertoire of articular chondrocytes to TLR activation. Mass spectrometry was used to analyse the secretome of stimulated and unstimulated cells. Characterization of TLR expression in rat articular chondrocytes by RT/PCR indicated that TLR4 was the major receptor form. Exposure of these cells to lipopolysaccharide (LPS), the well-characterized TLR4 ligand, induced production not only of the matrix metalloproteinases MMP3 and 13, but also of components traditionally associated with the innate immune response, such as the complement components C1r, C3 and complement factor B, long pentraxin-3 and osteoglycin. Neither TNF-alpha nor IL-1 was detectable in culture media following exposure to LPS. One of the most prominently-induced proteins was the chitinase-like protein, Chi3L1, linking its expression to the innate immune response repertoire of articular chondrocytes. In intact femoral heads, LPS induced expression of Chi3L1 in chondrocytes close to the articular surface, suggesting that only these cells mount a stress response to LPS. Thus articular chondrocytes have a capacity to respond to TLR activation, which results in the expression of matrix metalloproteases as well as subsets of components of the innate immune response without significant increases in the production of inflammatory cytokines. This could influence the erosive processes leading to cartilage degeneration as well as the repair of damaged matrix.  相似文献   

8.
With the aim of identifying novel genes regulating cartilage development and degeneration, we screened a cartilage-specific expressed sequence tag database. Esophageal cancer related gene 4 (ECRG4) was selected, based on the criteria of ‘chondrocyte-specific’ and ‘unknown function.’ ECRG4 expression was particularly abundant in chondrocytes and cartilage, compared to various other mouse tissues. ECRG4 is a secreted protein that undergoes cleavage after secretion. The protein is specifically expressed in chondrocytes in a manner dependent on differentiation status. The expression is very low in mesenchymal cells, and dramatically increased during chondrogenic differentiation. The ECRG4 level in differentiated chondrocytes is decreased during hypertrophic maturation, both in vitro and in vivo, and additionally in dedifferentiating chondrocytes induced by interleukin-1β or serial subculture, chondrocytes of human osteoarthritic cartilage and experimental mouse osteoarthritic cartilage. However, ectopic expression or exogenous ECRG4 treatment in a primary culture cell system does not affect chondrogenesis of mesenchymal cells, hypertrophic maturation of chondrocytes or dedifferentiation of differentiated chondrocytes. Additionally, cartilage development and organization of extracellular matrix are not affected in transgenic mice overexpressing ECRG4 in cartilage tissue. However, ectopic expression of ECRG4 reduced proliferation of primary culture chondrocytes. While the underlying mechanisms of ECRG4 expression and specific roles remain to be elucidated in more detail, our results support its function as a marker of differentiated articular chondrocytes and cartilage destruction.  相似文献   

9.
10.

Background  

Osteoarthritis (OA) is characterized by degeneration of articular cartilage. Animal models of OA induced are a widely used tool in the study of the pathogenesis of disease. Several proteomic techniques for selective extraction of proteins have provided protein profiles of chondrocytes and secretory patterns in normal and osteoarthritic cartilage, including the discovery of new and promising biomarkers. In this proteomic analysis to study several proteins from rat normal articular cartilage, two-dimensional electrophoresis and mass spectrometry (MS) were used. Interestingly, latexin (LXN) was found. Using an immunohistochemical technique, it was possible to determine its localization within the chondrocytes from normal and osteoarthritic articular cartilage.  相似文献   

11.
Hypertrophic maturation of chondrocytes is a crucial step in endochondral ossification, whereas abnormally accelerated differentiation of hypertrophic chondrocytes in articular cartilage is linked to pathogenesis of osteoarthritis. This cellular process is promoted or inhibited by bone morphogenetic protein (BMP) or transforming growth factor-β (TGF-β) signaling, respectively, suggesting that these signaling pathways cross-talk during chondrocyte maturation. Here, we demonstrated that expression of Tgfb1 was increased, followed by phosphorylation of Smad2, during BMP-2-induced hypertrophic maturation of ATDC5 chondrocytes. Application of a TGF-β type I receptor inhibitor compound, SB431542, increased the expression of Id1, without affecting the phosphorylation status of Smad1/5/8, indicating that the activated endogenous TGF-β pathway inhibited BMP signaling downstream of the Smad activation step. We searched for TGF-β-inducible effectors that are able to inhibit BMP signaling in ATDC5 cells and identified SnoN. Overexpression of SnoN suppressed the activity of a BMP-responsive luciferase reporter in COS-7 cells as well as expression of Id1 in ATDC5 cells and, subsequently, the expression of Col10a1, a hallmark of hypertrophic chondrocyte maturation. siRNA-mediated loss of SnoN showed opposite effects in BMP-treated ATDC5 cells. In adult mice, we found the highest level of SnoN expression in articular cartilage. Importantly, SnoN was expressed, in combination with phosphorylated Smad2/3, in prehypertrophic chondrocytes in the growth plate of mouse embryo bones and in chondrocytes around the ectopically existing hypertrophic chondrocytes of human osteoarthritis cartilage. Our results indicate that SnoN mediates a negative feedback mechanism evoked by TGF-β to inhibit BMP signaling and, subsequently, hypertrophic maturation of chondrocytes.  相似文献   

12.
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.  相似文献   

13.
Stress proteins (heat shock proteins [hsps]) serve a number of protective functions, including protection from apoptosis and acting as chaperones during protein biosynthesis. For example, hsp 27 has been defined as a chaperone for the G3 domain of aggrecan, while hsp 47 is the chaperone for type I collagen. Separate cytoprotective roles for hsp 27 and hsp 70 have been demonstrated. The aim of this study was to define the expression of hsps in osteoblastic and chondrocytic cells of the growing rat long bone in relationship to the immunohistochemical localization of aggrecan, type I collagen and the presence of fragmented DNA that defines apoptotic events. Tibiae were harvested from Fisher 344 rats (n=6) and fixed in 10% buffered formalin. Samples were decalcified in 10% EDTA, bisected, and processed for histologic examination. Sections (5 mm) were immunohistochemically stained using a streptavidin-biotin detection method. Co-localization of hsps with apoptosis was achieved using the TUNEL procedure. In the rat tibia growth plate, aggrecan was generally distributed throughout cartilage and chondrocytes. However, hsp 27 expression was observed only in the lower hypertrophic chondrocytes. hsp27 was present in osteoblasts lining newly formed bone. hsp 47 staining was also prominent within these osteoblasts where collagen type I immunolocalization occurred. The inducible form of hsp 70 was localized to the osteoblastic cells lining new bone in the primary spongiosa. In cartilage, DNA fragmentation was restricted to the hypertrophic, hsp27-positive, chondrocytes. In contrast, DNA fragmentation was not co-localized with hsp27-positive osteoblastic cells of the primary spongiosa, although occasional apoptotic cells were identified. These results indicate that apoptosis is a mechanism by which hypertrophic chondrocytes are eliminated from cartilage prior to calcification, but that other mechanisms are also likely to be involved. They also suggest that hsps have cytoprotective and biosynthetic functions within osteoblasts and chondrocytes, but apoptotic signals may override these effects in some instances, resulting in apoptosis.  相似文献   

14.
Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed that TGF-beta/Smad3 signals inhibit terminal hypertrophic differentiation of chondrocyte and are essential for maintaining articular cartilage. Mutant mice homozygous for a targeted disruption of Smad3 exon 8 (Smad3(ex8/ex8)) developed degenerative joint disease resembling human osteoarthritis, as characterized by progressive loss of articular cartilage, formation of large osteophytes, decreased production of proteoglycans, and abnormally increased number of type X collagen-expressing chondrocytes in synovial joints. Enhanced terminal differentiation of epiphyseal growth plate chondrocytes was also observed in mutant mice shortly after weaning. In an in vitro embryonic metatarsal rudiment culture system, we found that TGF-beta1 significantly inhibits chondrocyte differentiation of wild-type metatarsal rudiments. However, this inhibition is diminished in metatarsal bones isolated from Smad3(ex8/ex8) mice. These data suggest that TGF-beta/Smad3 signals are essential for repressing articular chondrocyte differentiation. Without these inhibition signals, chondrocytes break quiescent state and undergo abnormal terminal differentiation, ultimately leading to osteoarthritis.  相似文献   

15.
Several factors are known to be involved in the destruction of the articular cartilage. Interleukin-1 (IL-1) plays an important role in the pathogenesis of osteoarthritis (OA) either directly or through the stimulation of catabolic factors. The action of IL-1 on articular cartilage is multifaceted and it most likely plays an important role in the mechanism of cartilage destruction. IL-1 suppresses the synthesis of the cartilage matrix components and promotes the degradation of cartilage matrix macromolecules. Diacerein is an anthraquinone molecule that has been shown to reduce the severity of OA, both in man and in animal models. The present study was designed to evaluate in vitro effects of diacerein on IL-1beta expression in LPS or IL-1alpha stimulated chondrocytes. Intracellular IL-1beta production was analysed in articular chondrocytes cultured in monolayer or in alginate 3D-biosystems in the presence of lipopolysaccharide (LPS) or IL-1alpha, with or without diacerein. The results show that LPS and IL-1alpha increase intracellular IL-1beta and Diacerein inhibited LPS-induced and IL-1alpha induced IL-1beta production by articular chondrocytes. Moreover, the effect of mechanical stimulation was analysed. An inhibitory effect of DAR at therapeutic concentrations on IL-1beta production in articular chondrocytes is suggested.  相似文献   

16.
17.
This study was performed to determine if rat articular chondrocytes express caveolin, the structural protein of caveolae, and to determine differences in the distribution of the caveolin subtypes 1, 2 and 3 in knee joints of newborn and adult rats. All three subtypes of caveolin were detected in adult cartilage by immunocytochemical staining. In newborn rats, only caveolin-1 was found in the hyaline cartilage. Caveolin-1, -2 and -3 messenger RNA and protein were also detected in chondrocyte cell cultures. Ultrastructural investigations of cell culture and cartilage tissue revealed the presence of caveolae at the plasma membrane of chondrocytes. These findings represent the first report on the different expression of caveolin isoforms, in particular the expression of the muscle cell-specific caveolin-3 in chondrocytes. There is evidence that caveolin-2 and -3 are upregulated during growth and development of articular cartilage, suggesting a role for caveolins in chondrocyte differentiation. Accepted: 4 May 1999  相似文献   

18.
19.
Autophagy maintains cellular homoeostasis. The enhancement of autophagy in chondrocytes could prevent osteoarthritis (OA) progression in articular cartilage. Peroxisome proliferator‐activated receptor α (PPARα) activation may also protect articular chondrocytes against cartilage degradation in OA. However, whether the protective effect of activated PPARα is associated with autophagy induction in chondrocytes is not determined. In this study, we investigated the effect of PPARα activation by its agonist, WY14643, on the protein expression level of Aggrecan and ADAMTS5, and the protein expression level of autophagy biomarkers, including LC3B and P62, using Western blotting analysis in isolated mouse chondrocytes pre‐treated with lipopolysaccharides (LPS, mimicking OA chondrocytes) with or without the autophagy inhibitor chloroquine diphosphate salt. Furthermore, Akt and ERK phosphorylation was detected in LPS‐treated chondrocytes in response to WY14643. In addition, the effect of intra‐articularly injected WY14643 on articular cartilage in a mouse OA model established by the destabilization of the medial meniscus was assessed using the Osteoarthritis Research Society International (OARSI) histopathology assessment system, along with the detection of Aggrecan, ADAMTS5, LC3B and P62 protein levels using immunohistochemistry assay. The results indicated that PPARα activation by WY14643 promoted proteoglycan synthesis by autophagy enhancement in OA chondrocytes in vivo and in vitro concomitant with the elevation of Akt and ERK phosphorylation. Therefore, autophagy could contribute to the chondroprotection of PPARα activation by WY14643, with the implication that PPARα activation by WY14643 may be a potential approach for OA therapy.  相似文献   

20.
The in vivo localization of glucocorticoid receptor (GR) mRNA expression was studied in the cartilage and bone cells of the femur of young adult rats to compare its distribution with that of the GR protein, which had previously been shown histochemically in the same areas. To achieve this, we used a synthetic oligodeoxynucleotide as a probe, in line with the published human GR (hGR) cDNA sequence. The probe was coupled to fluorescein (FL), applying a rapid Fast-Tag TM FL nucleic acid labeling method. Negative controls were achieved by using sense sequences of the hGR oligoprobe, similarly coupled by using the Fast-Tag TM FL labeling kit. Dewaxed sections were treated for in situ hybridization (ISH) histochemistry with the antisense and sense oligoprobes. The ISH reaction product was more intense in the cytoplasm of proliferative and maturative chondrocytes of the growth plate cartilage than in that shown in the hypertrophic ones. In the metaphyseal secondary ossification zone, osteoblasts (OBs) and osteocytes (OCs) were variably labeled, whereas osteoclasts (OCLs) were always intensely stained. The labeling was also visible in some bone marrow cells, in articular chondrocytes, in the cells of tendon-bone junctions, and in the perichondrium and periosteal cells. Our results confirm a cellular co-location of GR protein and mRNA. In agreement with GR immunolocalization, the variability of labeling appeared to be related to the cell cycle, the stage of differentiation and cell-type differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号