首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastrin and ghrelin are secreted from G cells and X/A-like cells in the stomach, respectively, and respective hormones stimulate gastric acid secretion by acting through histamine and the vagus nerve. In this study, we examined the relationship between gastrin, ghrelin and gastric acid secretion in rats. Intravenous (iv) administration of 3 and 10 nmol of gastrin induced transient increases of ghrelin levels within 10 min in a dose-dependent manner. Double immunostaining for ghrelin and gastrin receptor revealed that a proportion of ghrelin cells possess gastrin receptors. Although (iv) administration of gastrin or ghrelin induced significant gastric acid secretion, simultaneous treatment with both hormones resulted in a synergistic, rather than additive, increase of gastric acid secretion. This synergistic increase was not observed in vagotomized rats.These results suggest that gastrin may directly stimulate ghrelin release from the stomach, and that both hormones may increase gastric acid secretion synergistically.  相似文献   

2.
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.  相似文献   

3.
Ghrelin, identified as an endogenous ligand for the growth hormone secretagogue receptor, is a 28 amino acid peptide hormone possessing an unusual octanoyl group on the serine in position 3, crucial for its biological activity. Ghrelin is predominantly produced by the stomach but also by many other tissues such as pituitary, hypothalamus, duodenum, jejunum, ileum, colon, lung, heart, pancreas, kidney, and testis. In addition to stimulation of GH release, ghrelin stimulates appetite and food intake, enhancing fat mass deposition and weight gain. Besides these main actions, ghrelin regulates gastric motility and acid secretion, exerts cardiovascular and anti-inflammatory effects, modulates cell proliferation and influences endocrine and exocrine pancreatic secretion, as well as glucose and lipid metabolism. Therefore, ghrelin agonists and antagonists might be valuable for some clinical aspects.  相似文献   

4.
Ghrelin is a recently discovered peptide in the endocrine cells of the stomach, which may stimulate gastric motility via the vagal nerve pathway. However, the mechanism of ghrelin-induced changes in gastrointestinal motility has not been clearly defined. The purpose of this study was to investigate the pharmacological effects of ghrelin on gastric myoelectrical activity and gastric emptying in rats, and to investigate whether cholinergic activity is involved in the effects of ghrelin. The study was performed on Sprague-Dawley rats implanted with serosal electrodes for electrogastrographic recording. Gastric slow waves were recorded from fasting rats at baseline and after injection of saline, ghrelin, atropine, or atropine+ghrelin. Gastric emptying of non-caloric liquid was measured by the spectrophotometric method in conscious rats. Intravenous administration of rat ghrelin (20 microg/kg) increased not only dominant frequency, dominant power and regularity of the gastric slow wave but also the gastric emptying rate when compared with the control rats (P<0.01, P<0.05, P<0.05, P<0.001 respectively). These stimulatory actions of ghrelin on both gastric myoelectrical activity and gastric emptying were not fully eliminated by pretreatment with atropine sulphate. These results taken together suggest that ghrelin may play a physiological role in the enteric neurotransmission controlling gastric contractions in rats.  相似文献   

5.
Ghrelin is a gut peptide that is secreted from the stomach and stimulates food intake. There are ghrelin receptors throughout the gut and intracerebroventricular ghrelin has been shown to increase gastric acid secretion. The aim of the present study was to examine the effects of peripherally administered ghrelin on gastric emptying of a non-nutrient and nutrient liquid, as well as, basal and pentagastrin-stimulated gastric acid secretion in awake rats. In addition, gastric contractility was studied in vitro. Rats equipped with a gastric fistula were subjected to an intravenous infusion of ghrelin (10-500 pmol kg(-1) min(-1)) during saline or pentagastrin (90 pmol kg(-1) min(-1)) infusion. After administration of polyethylene glycol (PEG) 4000 with 51Cr as radioactive marker, or a liquid nutrient with (51)Cr, gastric retention was measured after a 20-min infusion of ghrelin (500 pmol kg(-1) min(-1)). In vitro isometric contractions of segments of rat gastric fundus were studied (10(-9) to 10(-6) M). Ghrelin had no effect on basal acid secretion, but at 500 pmol kg(-1) min(-1) ghrelin significantly decreased pentagastrin-stimulated acid secretion. Ghrelin had no effect on gastric emptying of the nutrient liquid, but significantly increased gastric emptying of the non-nutrient liquid. Ghrelin contracted fundus muscle strips dose-dependently (pD2 of 6.93+/-0.7). Ghrelin IV decreased plasma orexin A concentrations and increased plasma somatostatin concentrations. Plasma gastrin concentrations were unchanged during ghrelin infusion. Thus, ghrelin seems to not only effect food intake but also gastric motor and secretory function indicating a multifunctional role for ghrelin in energy homeostasis.  相似文献   

6.
Somatostatin suppresses ghrelin secretion from the rat stomach   总被引:6,自引:0,他引:6  
Ghrelin is an acylated peptide that stimulates food intake and the secretion of growth hormone. While ghrelin is predominantly synthesized in a subset of endocrine cells in the oxyntic gland of the human and rat stomach, the mechanism regulating ghrelin secretion remains unknown. Somatostatin, a peptide produced in the gastric oxyntic mucosa, is known to suppress secretion of several gastrointestinal peptides in a paracrine fashion. By double immunohistochemistry, we demonstrated that somatostatin-immunoreactive cells contact ghrelin-immunoreactive cells. A single intravenous injection of somatostatin reduced the systemic plasma concentration of ghrelin in rats. Continuous infusion of somatostatin into the gastric artery of the vascularly perfused rat stomach suppressed ghrelin secretion in both dose- and time-dependent manner. These findings indicate that ghrelin secretion from the stomach is regulated by gastric somatostatin.  相似文献   

7.
Gastroesophageal reflux disease (GERD) is often associated with decreased upper gastrointestinal motility, and ghrelin is an appetite-stimulating hormone known to increase gastrointestinal motility. We investigated whether ghrelin signaling is impaired in rats with GERD and studied its involvement in upper gastrointestinal motility. GERD was induced surgically in Wistar rats. Rats were injected intravenously with ghrelin (3 nmol/rat), after which gastric emptying, food intake, gastroduodenal motility, and growth hormone (GH) release were investigated. Furthermore, plasma ghrelin levels and the expression of ghrelin-related genes in the stomach and hypothalamus were examined. In addition, we administered ghrelin to GERD rats treated with rikkunshito, a Kampo medicine, and examined its effects on gastroduodenal motility. GERD rats showed a considerable decrease in gastric emptying, food intake, and antral motility. Ghrelin administration significantly increased gastric emptying, food intake, and antral and duodenal motility in sham-operated rats, but not in GERD rats. The effect of ghrelin on GH release was also attenuated in GERD rats, which had significantly increased plasma ghrelin levels and expression of orexigenic neuropeptide Y/agouti-related peptide mRNA in the hypothalamus. The number of ghrelin-positive cells in the gastric body decreased in GERD rats, but the expression of gastric preproghrelin and GH secretagogue receptor mRNA was not affected. However, when ghrelin was exogenously administered to GERD rats treated with rikkunshito, a significant increase in antral motility was observed. These results suggest that gastrointestinal dysmotility is associated with impaired ghrelin signaling in GERD rats and that rikkunshito restores gastrointestinal motility by improving the ghrelin response.  相似文献   

8.
Ghrelin--not just another stomach hormone   总被引:14,自引:0,他引:14  
Growth hormone (GH) secretagogues (GHSs) are non-natural, synthetic substances that stimulate GH secretion via a G-protein-coupled receptor called the GHS-receptor (GHS-R). The natural ligand for the GHS-R has been identified recently; it is called ghrelin. Ghrelin and its receptor show a widespread distribution in the body; the greatest expression of ghrelin is in stomach endocrine cells. Administration of exogenous ghrelin has been shown to stimulate pituitary GH secretion, appetite, body growth and fat deposition. Ghrelin was probably designed to be a major anabolic hormone. Ghrelin also exerts several other activities in the stomach. The findings that ghrelin is produced in mucosal endocrine cells of the stomach and intestine, and that ghrelin is measurable in the general circulation indicate its hormonal nature. A maximal expression of ghrelin in the stomach suggests that there is a gastrointestinal hypothalamic-pituitary axis that influences GH secretion, body growth and appetite that is responsive to nutritional and caloric intakes.  相似文献   

9.
Ghrelin acts in the central nervous system to stimulate gastric acid secretion   总被引:37,自引:0,他引:37  
Ghrelin is a novel acylated peptide that functions in the regulation of growth hormone release and energy metabolism. It was isolated from rat stomach as an endogenous ligand for growth hormone secretagogue receptor. Ghrelin is also localized in the arcuate nucleus of rat hypothalamus. Intracerebroventricular (ICV) administration increases food intake and body weight. We examined the effect of ghrelin on gastric acid secretion in urethane-anesthetized rats and found that ICV administration of ghrelin increased gastric acid output in a dose-dependent manner. Vagotomy and administration of atropine abolished the gastric acid secretion induced by ghrelin. ICV administration of ghrelin also induced c-fos expression in the neurons of the nucleus of the solitary tract and the dorsomotor nucleus of the vagus, which are key sites in the central nervous system for regulation of gastric acid secretion. Our results suggest that ghrelin participates in the central regulation of gastric acid secretion by activating the vagus system.  相似文献   

10.
胃酸分泌的外周调节   总被引:3,自引:0,他引:3  
肠神经节后神经纤维支配了胃粘膜壁细胞、ECL细胞、G细胞和D细胞,某些体液因子也可影响后三种内分泌细胞的分泌功能,它们相互作用最终调节组织胺的释放,从而组织胺、胃泌素、乙酰胆碱、生长抑素共同调节壁细胞的泌酸功能,以控制胃内适当的酸度。这些中调节机制涉及神经、体液、内分泌、旁分泌、自然分泌和神经一一内分泌等的过程。  相似文献   

11.
12.
目的:探讨Ghrelin对糖尿病大鼠下丘脑弓状核胃扩张敏感神经元和胃运动的影响。方法:逆行追踪结合免疫组化观察ARC中GHSR-1的表达,细胞外放电记录,观察ghrelin对GD神经元放电活动的影响及电刺激ARC对GD神经元放电活动和胃运动的影响。结果:电生理实验结果表明,在ARC Ghrelin能够能激发GD兴奋性神经元(GD-E)和GD抑制性神经元(GD-I)。然而,ghrelin可以兴奋更少的GD-E神经元,在正常大鼠中ghrelin对于GD-E的兴奋作用比在DM大鼠中的作用弱。在体胃运动研究表明,在ARC中微量注射ghrelin可以明显的增强胃运动,并且呈现剂量依赖关系。Ghrelin在糖尿病大鼠促胃动力作用低于正常大鼠。Ghrelin诱导的效应可被生长激素促分泌素受体(GHSR)拮抗剂阻断[d-lys-3]-GHRP-6或bim28163。放射免疫法和实时荧光定量PCR数据表明胃血浆ghrelin水平,在ARC ghrelin mRNA的表达水平先上升后下降,糖尿病大鼠(DM)中,在ARC中GHSR-1a mRNA表达保持在一个比较低的水平。结论:ghrelin可以调节GD敏感神经元以及胃运动,通过ARC中ghrelin受体。在糖尿病大鼠中,Ghrelin促进胃运动作用减弱可能与ARC中ghrelin受体表达减少有关。  相似文献   

13.
Ghrelin is an acylated peptide stimulating secretion of the growth hormone (GH). It was originally isolated from the rat stomach as an endogenous ligand for the growth hormone secretagogue receptor. Although being predominantly produced by endocrine cells of the gastric fundus, its secretion has been found in various tissues including the kidney. To study the influence of renal failure on plasma ghrelin levels we examined 16 patients with end-stage renal disease (ESRD) receiving hemodialysis (8 men and 8 women) and 19 controls (10 men and 9 women). Both groups were comparable in age and BMI. In all subjects we assessed plasma levels of ghrelin, leptin, soluble leptin receptor, insulin, IGF-I, IGFBP-1, IGFBP-3 and IGFBP-6. Ghrelin levels were significantly higher in the group of dialyzed patients (4.49+/-0.74 vs. 1.79+/-0.15 ng/ml; p<0.001). These patients had significantly higher levels of GH, IGFBP-1, IGFBP-6, leptin and percentage of body fat (p<0.05). In the group of patients with ESRD plasma ghrelin levels positively correlated with IGFBP-1 (p<0.01). In the control group, ghrelin positively correlated with GH concentrations (p<0.01) and negatively correlated with the levels of insulin and creatinine (p<0.05). In conclusion, patients with ESRD have higher ghrelin concentrations, which might be caused by a decreased excretion/metabolism of ghrelin in the kidney during renal failure.  相似文献   

14.
Motilin and ghrelin constitute a peptide family, and these hormones are important for the regulation of gastrointestinal motility. In this study, we examined the effect of motilin and ghrelin on gastric acid secretion in anesthetized suncus (house musk shrew, Suncus murinus), a ghrelin- and motilin-producing mammal. We first established a gastric lumen-perfusion system in the suncus and confirmed that intravenous (i.v.) administration of histamine (1 mg/kg body weight) stimulated acid secretion. Motilin (0.1, 1.0, and 10 μg/kg BW) stimulated the acid output in a dose-dependent manner in suncus, whereas ghrelin (0.1, 1.0, and 10 μg/kg BW) alone did not induce acid output. Furthermore, in comparison with the vehicle administration, the co-administration of low-dose (1 μg/kg BW) motilin and ghrelin significantly stimulated gastric acid secretion, whereas either motilin (1 μg/kg BW) or ghrelin (1 μg/kg BW) alone did not significantly induce gastric acid secretion. This indicates an additive role of ghrelin in motilin-induced gastric acid secretion. We then investigated the pathways of motilin/motilin and ghrelin-stimulated acid secretion using receptor antagonists. Treatment with YM 022 (a CCK-B receptor antagonist) and atropine (a muscarinic acetylcholine receptor antagonist) had no effect on motilin or motilin-ghrelin co-administration-induced acid output. In contrast, famotidine (a histamine H2 receptor antagonist) completely inhibited motilin-stimulated acid secretion and co-administration of motilin and ghrelin induced gastric acid output. This is the first report demonstrating that motilin stimulates gastric secretion in mammals. Our results also suggest that motilin and co-administration of motilin and ghrelin stimulate gastric acid secretion via the histamine-mediated pathway in suncus.  相似文献   

15.
Ghrelin is a new gastric peptide involved in food intake control and growth hormone release. We aimed to assess its cell localisation in man during adult and fetal life and to clarify present interspecies inconsistencies of gastric endocrine cell types. A specific serum generated against amino acids 13-28 of ghrelin was tested on fetal and adult gastric mucosa and compared with ghrelin in situ hybridisation. Immunogold electron microscopy was performed on normal human, rat and dog adult stomach. Ghrelin cells were detected in developing gut, pancreas and lung from gestational week 10 and in adult human, rat and dog gastric mucosa. By immunogold electron microscopy, gastric ghrelin cells showed distinctive morphology and hormone reactivity in respect to histamine enterochromaffin-like, somatostatin D, glucagon A or serotonin enterochromaffin cells. Ghrelin cells were characterised by round, compact, electron-dense secretory granules of P/D(1) type in man (mean diameter 147+/-30 nm), A-like type in the rat (183+/-37 nm) and X type in the dog (273+/-49 nm). It is concluded that, ghrelin is produced by well-defined cell types, which in the past had been labelled differently in various mammals mostly because of the different size of their secretory granule. In man ghrelin cells develop during early fetal life.  相似文献   

16.
Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal-regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt.These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.  相似文献   

17.
Ghrelin is produced mainly by endocrine cells in the stomach and is an endogenous ligand for the growth hormone secretagogue receptor (GHS-R). It also influences feeding behavior, metabolic regulation, and energy balance. It affects islet hormone secretion, and expression of ghrelin and GHS-R in the pancreas has been reported. In human islets, ghrelin expression is highest pre- and neonatally. We examined ghrelin and GHS-R in rat islets during development with immunocytochemistry and in situ hybridization. We also studied the effect of ghrelin on insulin secretion from INS-1 (832/13) cells and the expression of GHS-R in these cells. We found ghrelin expression in rat islet endocrine cells from mid-gestation to 1 month postnatally. Islet expression of GHS-R mRNA was detected from late fetal stages to adult. The onset of islet ghrelin expression preceded that of gastric ghrelin. Islet ghrelin cells constitute a separate and novel islet cell population throughout development. However, during a short perinatal period a minor subpopulation of the ghrelin cells co-expressed glucagon or pancreatic polypeptide. Markers for cell lineage, proliferation, and duct cells revealed that the ghrelin cells proliferate, originate from duct cells, and share lineage with glucagon cells. Ghrelin dose-dependently inhibited glucose-stimulated insulin secretion from INS-1 (832/13) cells, and GHS-R was detected in the cells. We conclude that ghrelin is expressed in a novel developmentally regulated endocrine islet cell type in the rat pancreas and that ghrelin inhibits glucose-stimulated insulin secretion via a direct effect on the beta-cell.  相似文献   

18.
Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue (GHS) receptor (GHS-R) and a potent stimulant for GH secretion even in infantile rats before puberty. Although the ventromedial nucleus of the hypothalamus (VMH) might be a site of action for ghrelin to induce GH release, the electrophysiological effect of ghrelin on VMH neurons in infantile rats remains to be elucidated. Thus, the purpose of the present study was to investigate the effect of ghrelin on VMH neurons using hypothalamic slices of infantile rats. Ghrelin excited a majority of VMH neurons in a concentration-dependent manner. VMH neurons that were excited by GH releasing peptide-6 (GHRP-6), a synthetic GHS, were also excited by ghrelin and vice versa. Repeated application of ghrelin to the same VMH neuron decreased progressively the excitatory responses depending on the number of times it was administered. The excitatory effect of ghrelin on VMH neurons in normal artificial cerebrospinal fluid (ACSF) persisted in low Ca2+-high Mg2+ ACSF. The present results indicate that (1) ghrelin excites a majority of VMH neurons dose-dependently and postsynaptically and (2) the excitatory effects of ghrelin are mimicked by GHRP-6 and desensitized by repeated applications of ghrelin.  相似文献   

19.
20.
Ghrelin is a gastric peptide, discovered by Kojima et al. (1999) [55] as a result of the search for an endogenous ligand interacting with the “orphan receptor” GHS-R1a (growth hormone secretagogue receptor type 1a). Ghrelin is composed of 28 aminoacids and is produced mostly by specific cells of the stomach, by the hypothalamus and hypophysis, even if its presence, as well as that of its receptors, has been demonstrated in many other tissues, not least in gonads. Ghrelin potently stimulates GH release and participates in the regulation of energy homeostasis, increasing food intake, decreasing energy output and exerting a lipogenetic effect. Furthermore, ghrelin influences the secretion and motility of the gastrointestinal tract, especially of the stomach, and, above all, profoundly affects pancreatic functions. Despite of these previously envisaged activities, it has recently been hypothesized that ghrelin regulates several aspects of reproductive physiology and pathology. In conclusion, ghrelin not only cooperates with other neuroendocrine factors, such as leptin, in the modulation of energy homeostasis, but also has a crucial role in the regulation of the hypothalamic–pituitary gonadal axis. In the current review we summarize the main targets of this gastric peptide, especially focusing on the reproductive system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号