首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helper-dependent adenovirus (hdAd) vectors have shown great promise as therapeutic gene delivery vehicles in gene therapy applications. However, the level and duration of gene expression from hdAd can differ considerably depending on the nature of the noncoding stuffer DNA contained within the vector. For example, an hdAd containing 22 kb of prokaryotic DNA (hdAd-prok) expresses its transgene 60-fold less efficiently than a similar vector containing eukaryotic DNA (hdAd-euk). Here we have determined the mechanistic basis of this phenomenon. Although neither vector was subjected to CpG methylation and both genomes associated with cellular histones to similar degrees, hdAd-prok chromatin was actively deacetylated. Insertion of an insulator element between the transgene and the bacterial DNA derepressed hdAd-prok, suggesting that foreign DNA nucleates repressive chromatin structures that spread to the transgene. We found that Sp100B/Sp100HMG and Daxx play a role in repressing transgene expression from hdAd and act independently of PML bodies. Thus, we have identified nuclear factors involved in recognizing foreign DNA and have determined the mechanism by which associated genes are repressed.Efficient delivery and expression of foreign genes are of great importance in medicine and basic science. In many gene therapy applications, expression of the therapeutic gene would be required for the lifetime of the patient, yet many vector systems display only transient expression, lasting as little as a few days or weeks. Helper-dependent adenovirus (hdAd) vectors can enhance the duration of expression of a therapeutic gene; studies of mice and nonhuman primates have yielded several years of gene expression after a single administration (28). Indeed, several studies have described lifelong expression of a gene and persistent phenotypic correction in mouse models of human disease (18, 26, 42).Most hdAds contain noncoding “stuffer” DNA to maintain the size of the vector within appropriate limits for efficient DNA packaging; vectors constructed below ∼27 kb undergo DNA rearrangement in order to increase the size of the genome to 27 to 38 kb (31, 38). Interestingly, the nature of the stuffer DNA included in the hdAd has a significant effect on the function of the vector. An hdAd vector containing 22 kb of eukaryotic DNA (hdAd-euk) expressed a transgene to a higher level and for a longer duration than a vector containing 22 kb of prokaryotic DNA (hdAd-prok), both in vitro and in vivo (29). The genomes of the two vectors persisted at similar levels within the livers of transduced mice, suggesting that incorporation of prokaryote-derived stuffer DNA into an hdAd leads to the shutoff of associated transgenes. As a result of these observations, most current hdAd vectors are constructed using stuffer DNA derived from eukaryotic sources (27).Silencing of transgenes associated with prokaryotic DNA is not unique to hdAd. Removal of the bacterial origin of replication and antibiotic resistance gene from herpes simplex virus (HSV) amplicons resulted in a 20-fold improvement in gene expression in normal human fibroblasts in vitro, and more-persistent reporter gene expression in nude mice, compared to amplicons retaining the bacterial elements (39). Similarly, removal of bacterial sequences from plasmids results in significantly improved transgene expression in vitro and in vivo (2, 3, 34). For both plasmid and HSV amplicons, the mechanisms by which the bacterial sequences impair transgene expression are not fully understood. However, the bacterial sequences appear to nucleate the formation of a repressive chromatin structure(s) that spreads to the transgene (4, 39).In this study, we experimentally address the mechanism behind the repressive effects of prokaryotic DNA on gene expression in hdAd vectors. We found that prokaryotic DNA inhibits eukaryotic gene expression in cis, via induction of histone deacetylation, which is independent of DNA methylation. Furthermore, our data indicate that Sp100 and Daxx are involved in repressing the expression of genes associated with prokaryotic DNA.  相似文献   

2.
3.
Effective gene therapy is dependent on safe gene delivery vehicles that can achieve efficient transduction and sustained transgene expression. We are developing a hybrid viral vector system that combines in a single particle the large cloning capacity and efficient cell cycle-independent nuclear gene delivery of adenovirus (Ad) vectors with the long-term transgene expression and lack of viral genes of adeno-associated virus (AAV) vectors. The strategy being pursued relies on coupling the AAV DNA replication mechanism to the Ad encapsidation process through packaging of AAV-dependent replicative intermediates provided with Ad packaging elements into Ad capsids. The generation of these high-capacity AAV/Ad hybrid vectors takes place in Ad early region 1 (E1)-expressing cells and requires an Ad vector with E1 deleted to complement in trans both AAV helper functions and Ad structural proteins. The dependence on a replicating helper Ad vector leads to the contamination of AAV/Ad hybrid vector preparations with a large excess of helper Ad particles. This renders the further propagation and ultimate use of these gene delivery vehicles very difficult. Here, we show that Cre/loxP-mediated genetic selection against the packaging of helper Ad DNA can reduce helper Ad vector contamination by 99.98% without compromising hybrid vector rescue. This allowed amplification of high-capacity AAV/Ad hybrid vectors to high titers in a single round of propagation.  相似文献   

4.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

5.
In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.  相似文献   

6.
Gene therapy for hemoglobinopathies requires efficient gene transfer into hematopoietic stem cells and high-level erythroid-specific gene expression. Toward this goal, we constructed a helper-dependent adenovirus vector carrying the beta-globin locus control region (LCR) to drive green fluorescent protein (GFP) expression, whereby the LCR-GFP cassette is flanked by adeno-associated virus (AAV) inverted terminal repeats (Ad.LCR-beta-GFP). This vector possesses the adenovirus type 35 fiber knob that allows efficient infection of hematopoietic cells. Transduction and vector integration studies were performed in MO7e cells, a growth factor-dependent CD34(+) erythroleukemic cell line, and in cord blood-derived human CD34(+) cells. Stable transduction of MO7e cells with Ad.LCR-beta-GFP was more efficient and less subject to position effects and silencing than transduction with a vector that did not contain the beta-globin LCR. Analysis of integration sites indicated that Ad.LCR-beta-GFP integration in MO7e cells was not random but tethered to chromosome 11, specifically to the globin LCR. More than 10% of analyzed integration sites were within the chromosomal beta-globin LCR. None of the Ad.LCR-beta-GFP integrations occurred in exons. The integration pattern of a helper-dependent vector that contained X-chromosomal stuffer DNA was different from that of the beta-globin LCR-containing vector. Infection of primary CD34(+) cells with Ad.LCR-beta-GFP did not affect the clonogenic capacity of CD34(+) cells. Transduction of CD34(+) cells with Ad.LCR-beta-GFP resulted in vector integration and erythroid lineage-specific GFP expression.  相似文献   

7.
Direct or inverse repeated sequences are important functional features of prokaryotic and eukaryotic genomes. Considering the unique mechanism, involving single-stranded genomic intermediates, by which adenovirus (Ad) replicates its genome, we investigated whether repetitive homologous sequences inserted into E1-deleted adenoviral vectors would affect replication of viral DNA. In these studies we found that inverted repeats (IRs) inserted into the E1 region could mediate predictable genomic rearrangements, resulting in vector genomes devoid of all viral genes. These genomes (termed DeltaAd.IR) contained only the transgene cassette flanked on both sides by precisely duplicated IRs, Ad packaging signals, and Ad inverted terminal repeat sequences. Generation of DeltaAd.IR genomes could also be achieved by coinfecting two viruses, each providing one inverse homology element. The formation of DeltaAd.IR genomes required Ad DNA replication and appeared to involve recombination between the homologous inverted sequences. The formation of DeltaAd. IR genomes did not depend on the sequence within or adjacent to the inverted repeat elements. The small DeltaAd.IR vector genomes were efficiently packaged into functional Ad particles. All functions for DeltaAd.IR replication and packaging were provided by the full-length genome amplified in the same cell. DeltaAd.IR vectors were produced at a yield of approximately 10(4) particles per cell, which could be separated from virions with full-length genomes based on their lighter buoyant density. DeltaAd.IR vectors infected cultured cells with the same efficiency as first-generation vectors; however, transgene expression was only transient due to the instability of deleted genomes within transduced cells. The finding that IRs present within Ad vector genomes can mediate precise genetic rearrangements has important implications for the development of new vectors for gene therapy approaches.  相似文献   

8.
BACKGROUND: Modification of the fiber proteins in replication-deficient adenoviral (Ad) vectors through incorporation of specific receptor-binding motifs may represent a strategy to enhance their tissue targeting capabilities. METHODS: In this study, we compared an unmodified Ad (GV10) with two mutated vectors obtained by insertion of specific target sequences that redirect binding, either toward alpha(V) integrin (RGD) or heparan sulfate (UTV) cellular receptors, for reporter gene expression spatial distribution in the rabbit skeletal muscle. In a first series of experiments, injection volume was kept constant and activity of a lacZ transgene was evaluated 48 h after injection of the Ad vectors at different doses. In separate experiments, the effects of different volumes of injection at a constant dose of Ad vector were monitored. RESULTS: All vectors evaluated showed a significant increase in the number of lacZ-positive muscle segments, with increasing vector dose. However, in muscles treated with the UTV vector, fewer muscle fibers were beta-gal-positive than in GV10 or RGD vector treated animals. In fact, total beta-gal activity increased in a dose-dependent fashion in the GV10- and RGD-treated muscles, but not in the UTV-treated ones. Remarkably, in samples from UTV-treated animals, a volume-dependent enhancement of transgene expression was observed during experiments performed at the same dose and different injection volumes. CONCLUSIONS: The results of the present study demonstrate that altering Ad affinity for cellular receptors modulates the level and distribution of transgene activity, conferring characteristics that may allow for treatment customization.  相似文献   

9.
Adenovirus (Ad)-based vectors have great potential for use in the gene therapy of multiple diseases, both genetic and nongenetic. While capable of transducing both dividing and quiescent cells efficiently, Ad vectors have been limited by a number of problems. Most Ad vectors are engineered such that a transgene replaces the Ad E1a, E1b, and E3 genes; subsequently the replication-defective vector can be propagated only in human 293 cells that supply the deleted E1 gene functions in trans. Unfortunately, the use of high titers of E1-deleted vectors has been repeatedly demonstrated to result in low-level expression of viral genes still resident in the vector. In addition, the generation of replication-competent Ad (RCA) by recombination events with the E1 sequences residing in 293 cells further limits the usefulness of E1-deleted Ad vectors. We addressed these problems by isolating new Ad vectors deleted for the E1, E3, and the E2b gene functions. The new vectors can be readily grown to high titers and have several improvements, including an increased carrying capacity and a theoretically decreased risk for generating RCA. We have also demonstrated that the further block to Ad vector replication afforded by the deletion of both the E1 and E2b genes significantly diminished Ad late gene expression in comparison to a conventional E1-deleted vector, without destabilization of the modified vector genome. The results suggested that these modified vectors may be very useful both for in vitro and in vivo gene therapy applications.  相似文献   

10.
11.
12.
Replication-deficient recombinant adenovirus (Ad) encoding human gp100 or MART-1 melanoma Ag was used to transduce human dendritic cells (DC) ex vivo as a model system for cancer vaccine therapy. A second generation E1/E4 region deleted Ad which harbors the CMV immediate-early promoter/enhancer and a unique E4-ORF6/pIX chimeric gene was employed as the backbone vector. We demonstrate that human monocyte-derived DC are permissive to Ad infection at multiplicity of infection between 100 and 500 and occurs independent of the coxsackie Ad receptor. Fluorescent-labeled Ad was used to assess the kinetics and distribution of viral vector within DC. Ad-transduced DC show peak transgene expression at 24-48 h and expression remains detectable for at least 7 days. DC transduced with replication-deficient Ad do not exhibit any unusual phenotypic characteristics or cytopathic effects. DC transduced with Ad2/gp100v2 can elicit tumor-specific CTL in vitro from patients bearing gp100+ metastatic melanoma. Using a panel of gp100-derived synthetic peptides, we show that Ad2/gp100v2-transduced DC elicit Ag-specific CTL that recognize only the G209 and G280 epitopes, both of which display relatively short half-lives ( approximately 7-8 h) on the surface of HLA-A*0201+ cells. Thus, patients with metastatic melanoma are not tolerant to gp100 Ag based on the detection of CD8+ T cells specific for multiple HLA-A*0201-restricted, gp100-derived epitopes.  相似文献   

13.
Helper-dependent minimal adenovirus vectors are promising tools for gene transfer and therapy because of their high capacity and the absence of immunostimulatory or cytotoxic viral genes. In order to characterize this new vector system with respect to its integrative properties, the integration pattern of a minimal adenovirus vector with a neo(r) gene inserted centrally into a noncoding 27.4-kb genomic stuffer element derived from the human X chromosome after infection of a sex chromosome aneuploid (X0) human glioblastoma cell line was studied. Our results indicate that even extensive homologies and abundant chromosomal repeat elements present in the vector did not lead to integration of the vector via homologous or homology-mediated mechanisms. Instead, integration occurred primarily by insertion of a monomer with no or little loss of sequences at the vector ends, apparently at random sites, which is very similar to E1 deletion adenovirus vectors. It is therefore unlikely that the incorporation of stuffer elements derived from human genomic DNA, which were shown to allow long-term transgene expression in vivo in a number of studies, leads to an enhanced risk of insertional mutagenesis. Furthermore, our findings indicate that the potential of minimal adenovirus vectors as tools for targeted insertion and gene targeting is limited despite the possibility of incorporating long stretches of homologous sequences. However, we found an enhanced efficiency of stable neo(r) transduction of the minimal adenovirus vector compared to an E1 deletion adenovirus vector, possibly caused by the absence of potential growth-inhibitory viral genes. Complete integration of the vector and tolerance of the integrated vector sequences by the cell might indicate a potential use of these vectors as tools for stable transfer of (large) genes.  相似文献   

14.
Significant advances have recently been made in the development of vectors and gene-delivery systems for gene therapy. Experiments performed over the past decade have revealed how vectors will have to be modified to make them a clinically viable treatment option. In the case of adenovirus (Ad) vectors, which have been particularly useful as gene delivery vehicles, the main drawback associated with their use is vector-mediated immunogenicity. Recent modifications of the Ad backbone have led to the development of helper-dependent (HD) Ad vectors, which are completely devoid of all viral protein-coding sequences. These modifications have significantly reduced the immunogenicity of Ad vectors and have enhanced their safety. It is expected that HD vectors will become important tools for future clinical gene therapy.  相似文献   

15.
The utility of adenovirus vectors for gene therapy is limited by the transience of expression that has been observed in various in vivo models. Immunological responses to viral targets can eliminate transduced cells and cause the loss of transgene expression. We previously described the characterization of an E4 modified adenovirus, Ad2E4ORF6, which is replication defective in cotton rats. We reasoned that gene transfer vectors based on Ad2E4ORF6 would have a reduced potential for viral gene expression in vivo which might be beneficial for achieving persistence of transgene expression. E1 replacement vectors expressing the cystic fibrosis transmembrane regulator or beta-galactosidase were constructed as series of vectors that differed with respect to the E4 region. Vectors containing a wild-type E4 region, E4 open reading frame 6, or a complete E4 deletion were compared in the lungs of BALB/c mice for persistence of expression. Results obtained with nude mice indicate that nonimmunological factors have a major influence on the longevity of transgene expression. Expression was transient from the E1a promoter with all vectors but persisted from the cytomegalovirus promoter only with a vector containing a wild-type E4 region. Transience of expression did not correlate with the disappearance of vector DNA, suggesting that promoter down-regulation may be involved. Coinfection studies indicate an E4 product(s) could be supplied in trans to allow persistent expression from the cytomegalovirus promoter. In summary, the choice of promoter is important for achieving persistence of expression; in addition, some promoters are highly influenced by the context of the vector backbone.  相似文献   

16.
Wang H  Lieber A 《Journal of virology》2006,80(23):11699-11709
Random integration of viral gene therapy vectors and subsequent activation or disruption of cellular genes poses safety risks. Major efforts in the field are aimed toward targeting vector integration to specific sites in the host genome. The adeno-associated virus (AAV) Rep78 protein is able to target AAV integration to a specific site on human chromosome 19, called AAVS1. We studied whether this ability could be harnessed to achieve site-specific integration of a 27-kb transgene cassette into a model cell line for human hematopoietic cells (Mo7e). To deliver rep78 and the transgene to Mo7e cells, we used helper-dependent adenovirus (Ad) vectors containing Ad serotype 35 fiber knob domains (HD-Ad). An HD-Ad vector containing the rep78 gene under the control of the globin locus control region (LCR) (Ad.LCR-rep78) conferred Rep78 expression on Mo7e cells. Upon coinfection of Ad.LCR-rep78 with an HD-Ad vector containing a 27-kb globin-LCR-green fluorescent protein (GFP) transgene cassette flanked by AAV inverted terminal repeats (ITRs) (Ad.AAV-LCR-GFP), transduced cells were cloned and expanded (without selection pressure), and vector integration was analyzed in clones with more than 30% GFP-positive cells. Vector integration into the AAVS1 region was seen in 30% of analyzed integration sites, and GFP expression from these integrants was stable over time. Of the remaining integration sites, 25% were within the genomic globin LCR. In almost 90% of sites, transgene integration occurred via the Ad ITR. This indicates that rescue of the AAV ITR-flanked transgene cassette from Ad.AAV-LCR-GFP is not required for Rep78-mediated integration into AAVS1 and that free ends within the vector genome can be created by breaks within the Ad ITRs, whose structure is apparently recognized by cellular "nicking" enzymes. The finding that 55% of all analyzed integration sites were either within the AAVS1 or globin LCR region demonstrates that a high frequency of targeted integration of a large transgene cassette can be achieved in human hematopoietic stem cell lines.  相似文献   

17.
H Zhou  W O'Neal  N Morral    A L Beaudet 《Journal of virology》1996,70(10):7030-7038
Although adenovirus vectors offer many advantages, it would be desirable to develop vectors with improved expression and decreased toxicity. Toward this objective, an adenovirus vector system with deletion of both the El and E2a regions was developed. A 5.9-kb fragment of the adenovirus type 5 (Ad5) genome containing the E2a gene and its early and late promoters was transfected into 293 cells. A complementing cell line, designated 293-C2, expressed the E2a mRNA and protein and was found to complement the defect in Ad5 viruses with temperature-sensitive or deletion mutations in E2a. A deletion of 1.3 kb removing codons 40 to 471 of the 529 amino acids of E2a was introduced into plasmids for preparation of viruses and vectors. An Ad5 virus with disruption of the El gene and deletion of E2a grew on 293-C2 cells but not on 293 cells. Vectors with E1 and E2a deleted expressing Escherichia coli beta-galactosidase or human alpha1-antitrypsin were prepared and expressed the reporter genes after intravenous injection into mice. This vector system retains sequences in common between the complementing cell line and the vectors, including 3.4 kb upstream and 1.1 kb downstream of the deletion. These vectors have potential advantages of increased capacity for insertion of transgene sequences, elimination of expression of E2a, and possibly reduction in expression of other viral proteins. Although the titers of the vectors with deleted are about 10- to 30-fold below those of vectors with E2a wild-type regions, the former vectors are suitable for detailed studies with animals to evaluate the effects on host immune responses, on duration of expression, and on safety.  相似文献   

18.
Bernt K  Liang M  Ye X  Ni S  Li ZY  Ye SL  Hu F  Lieber A 《Journal of virology》2002,76(21):10994-11002
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application.  相似文献   

19.
A prominent goal in gene therapy research concerns the development of gene transfer vehicles that can integrate exogenous DNA at specific chromosomal loci to prevent insertional oncogenesis and provide for long-term transgene expression. Adenovirus (Ad) vectors arguably represent the most efficient delivery systems of episomal DNA into eukaryotic cell nuclei. The most advanced recombinant Ads lack all adenoviral genes. This renders these so-called high-capacity (hc) Ad vectors less cytotoxic/immunogenic than those only deleted in early regions and creates space for the insertion of large/multiple transgenes. The versatility of hcAd vectors is been increased by capsid modifications to alter their tropism and by the incorporation into their genomes of sequences promoting chromosomal insertion of exogenous DNA. Adeno-associated virus (AAV) can insert its genome into a specific human locus designated AAVS1. Trans- and cis-acting elements needed for this reaction are the AAV Rep78/68 proteins and Rep78/68-binding sequences, respectively. Here, we describe the generation, characterization and testing of fiber-modified dual hcAd/AAV hybrid vectors (dHVs) containing both these elements. Due to the inhibitory effects of Rep78/68 on Ad-dependent DNA replication, we deployed a recombinase-inducible gene switch to repress Rep68 synthesis during vector rescue and propagation. Flow cytometric analyses revealed that rep68-positive dHVs can be produced similarly well as rep68-negative control vectors. Western blot experiments and immunofluorescence microscopy analyses demonstrated transfer of recombinase-dependent rep68 genes into target cells. Studies in HeLa cells and in the dystrophin-deficient myoblasts from a Duchenne muscular dystrophy (DMD) patient showed that induction of Rep68 synthesis in cells transduced with fiber-modified and rep68-positive dHVs leads to increased stable transduction levels and AAVS1-targeted integration of vector DNA. These results warrant further investigation especially considering the paucity of vector systems allowing permanent phenotypic correction of patient-own cell types with large DNA (e.g. recombinant full-length DMD genes).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号