首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Previous work in our laboratory led to the isolation of a cadmium (Cd)-resistant variant (Cdr2C10) of the line CHO Chinese Hamster cell having a 10-fold greater resistance to the cytotoxic action of Cd2+ compared with the CHO cell. This resistance was attributed to an increased capacity of the Cd2+-resistant Cdr2C10 subline to induce synthesis of the Cd2+- and Zn2+-binding protein(s), metallothionein(s) (MT). Evidence that Cd2+ behaves as an analog of the essential trace metal, Zn2+, especially as an inducer of MT synthesis, suggested that the Cdr and CHO cell types could be employed to investigate cellular Zn2+ metabolism. In the present study, measurements were made to compare CHO and Cdr cell types for (a) growth as a function of the level of ZnCl2 added to the culture medium, (b) uptake and subcellular distribution of Zn2+, and (c) capacity to induce MT synthesis. The results of these measurements indicated that (a) both CHO and Cdr cell types grew normally (T d≊16–18 h) during exposures to Zn2+ at levels up to 100 μM added to the growth medium, but displayed abrupt growth inhibition at higher Zn2+ levels, (b) Cdr cells incorporate fourfold more Zn2+ during a 24-h exposure to the maximal subtoxic level of Zn2+ and (c) the CHO cell lacks the capacity to induce MT synethesis while the Cdr cell is proficient in this response during exposure to the maximal subtoxic Zn2+ level. These findings suggest that (a) the CHO and Cdr cell systems will be useful in further studies of cellular Zn2+ metabolism, especially in comparisons of Zn2+ metabolism in the presence and absence of induction of the Zn2+-sequestering MT and (b) a relationship exists between cellular capacity to induce MT synthesis and capacity for cellular Zn2+ uptake.  相似文献   

2.
Distribution and retention of zinc in the presence of cadmium and copper was studied in rats exposed repeatedly to these metals. The experiment was performed on white rats of the Wistar strain. The animals were divided into four groups/five rats each: 1)65ZnCl2; 2)65ZnCl2+CdCl2; 3)65ZnCl2+CuCl2; and 4) control group. Rats were administered sc every other day for two weeks:65ZnCl2−5 mg Zn/kg; CdCl2−0,3 Cd/kg; and CuCl2−2 mg Cu/kg. The zinc content was measured in rat tissues by γ-counting. Effect of Cd and Cu on subcellular distribution of zinc in the kidney and liver and on the level of metallothionein were also examined. Whole body retention of zinc under the influence of cadmium was lower than that observed in animals treated with zinc alone. However, copper increased twofold the whole body retention of zinc. Cadmium elevated the accumulation of zinc only in the kidneys nuclear fraction and liver soluble fraction. In the kidneys and liver, copper elevated the accumulation of zinc, in the nuclear, mitochondrial, and soluble fractions. The level of metallothionein-like proteins (MT) in the kidneys after a combined supply of zinc and copper was significantly increased with respect to the group of animals treated with zinc alone. These results indicated complex interactions between cadmium, copper, and zinc that can affect the metabolism of each of the metals.  相似文献   

3.
Plants play an important role in the removal of excess heavy metals from soil and water. Medicinal plants can also have non-traditional use in phytoremediation technologies. Among the heavy metals, Cadmium (Cd) is the most abundant and readily taken up by the crop plants. Plant metallothioneins (MTs) are small proteins having cysteine-rich residues and appear to play key roles in metal homoeostasis. Plant metallothionein 2 (MT 2) from Coptis japonica (Gold-thread; CjMT 2) is a typical member of this subfamily and features two cysteine-rich regions containing eight and six cysteine residues, respectively, separated by 42 amino acids long linker region. In-silico analysis of MT 2 protein sequences of C. japonica was performed. In this study, ab initio methods were utilised for the prediction of three-dimensional structure of CjMT 2. After structure validation, heavy metal-binding sites were predicted for the selected modelled structures of CjMT 2. To obtain Cdi-CjMT 2 (i = 1–7), metalated complex individual docking experiments were performed. The stability of the metalated docked structures was assessed by molecular dynamics (MD) simulation studies. Our study showed that CjMT 2 binds up to 4 Cd2+ ions in two distinct domains: a N-terminal β-domain that binds to 2 Cd2+ ions and a C-terminal α-domain that binds with 2 Cd2+ ions. Our analysis revealed that Cys residues of alpha and beta domain and some residues of spacer region of CjMT 2 protein might be important for the cadmium interaction. MD simulation studies provided insight into metal-induced conformational changes and mechanism of metalation of CjMT 2, an intrinsically disordered protein. This study provides useful insights into mechanism of cadmium-type 2 metallothionein interaction.  相似文献   

4.
 The synthetic peptide fragment containing residues 49–61 of rabbit liver metallothionein II (MT-II) (Ac-Ile-Cys-Lys-Gly-Ala-Ser-Asp-Lys-Cys-Ser-Cys-Cys-Ala-COOH), which includes the only sequential four cysteines bound to the same metal ion in Cd7MT, forms a stable, monomeric Cd-peptide complex with 1 : 1 stoichiometry (Cd:peptide) via Cd-thiolate interactions. This represents the first synthesis of a single metal-binding site of MT independent of the domains. The 111Cd NMR chemical shift at 716 ppm indicates that the 111Cd2+ in the metal site is terminally coordinated to four side-chain thiolates of the cysteine residues. The pH of half dissociation for this Cd-peptide derivative, ∼3.3, demonstrates an affinity similar to that for Cd7MT. Molecular mechanics calculations show that the thermodynamically most stable folding for this isolated Cd2+ center has the same counterclockwise chirality (Λ or S) observed in the native holo-protein. These properties are consistent with its proposed role as a nucleation center for cadmium-induced protein folding. However, the kinetic reactivity of the CdS4 structure toward 5,5′-dithiobis(5-nitrobenzoate) (DTNB) and EDTA is greatly increased compared to the complete cluster (α-domain or holo-protein). The rate law for the reaction with DTNB is rate=(k uf +k 1,f +k 2,f [DTNB])[peptide], where k uf=0.15 s–1, k 1,f=2.59×10–3 s–1, and k 2,f=0.88 M–1 s–1. The ultrafast step (uf), observable only by stopped-flow measurement, is unprecedented for mammalian (M7MT) and crustacean (M6MT) holo-proteins or the isolated domains. The accommodation of other metal ions by the peptide indicates a rich coordination chemistry, including stoichiometries of M-peptide for Hg2+, Cd2+, and Zn2+, M2-peptide for Hg2+ and Au+, and (Et3PAu)2-peptide. Received: 9 December 1998 / Accepted: 20 May 1999  相似文献   

5.
The amino acid composition, and the absorption, circular dichroism (CD) and magnetic circular dichroism spectra of a metalloprotein induced in the livers of guinea pigs by the injection of CdCl2 are reported. The amino acid composition of this protein closely resembles that of rat liver metallothionein (MT). We show that this protein has spectroscopic properties that closely follow the behaviour previously reported for several other cadmium-containing metallothioneins in its spectral response to changes in pH, and to the addition of cadmium and copper(I). Dramatic changes are observed in the CD spectrum during the addition of copper(I); it is suggested that these changes are the result of the formation of a mixed Cu(I)/Cd(II) cluster that forms in the α domain once the β domain has been saturated with Cu(I). These results are of particular importance in the characterization of this protein as belonging to the metallothionein class of proteins, as spectral changes of this type are directly related to the displacement of Cd2+ and Zn2+ from the two, thiolatecluster binding sites that are amongst the unique properties of mammalian metallothioneins. It is demonstrated that the CD spectrum provides a sensitive indicator of the presence of these special metal binding sites by indicating changes in the binding geometry and stoichiometry in response to an incoming metal. These results indicate that the guinea pig liver metallothionein induced by injections of CdCl2 uses the same α and β type of clusters for cadmium binding as rat liver Cd, Zn-MT, even though there are minor differences in the amino acid composition between the guinea pig and rat liver proteins.  相似文献   

6.
The effectiveness of some chelating agents to mobilize cadmium from Chinese hamster ovary cells after chronic exposure (20 hr), as well as from cytosolic metallothionein, was studied. In the first protocol, the most effective substance was 2,3-dimercaptopropanol, followed by 2,3-dimercaptopropane-1-sulfonate and 2,3-dimercaptosuccinic acid, whereas CaNa33-diethylenetriamine pentaacetic acid × 5H2O showed less effect. Simultaneous incubation of cells with cadmium and the chelating agent resulted in a different order of effectiveness: CaNa3 DTPA prevented cadmium uptake almost totally, 2,3-mercaptopropanol by 75% and 2,3-dimercaptopropane-1-sulfonate by 35%. Neither CaNa3-diethylenetriamine pentaacetic acid × 5H2O nor 2,3-dimercaptosuccinic acid had altered the distribution of cadmium between the cytosolic protein fractions after a 2 hr incubation of cells, whereas after this period, 2,3-dimercaptopropanol had removed all cadmium from metallothionein, and 2,3-dimercaptopropane-1-sulfonate about 50%. None of the chelating agents had reduced the amount of Cd bound to high molecular weight proteins. In the cell free system, 2,3-dimercaptopropanol and 2,3-dimercaptopropane-1-sulfonate were equally effective and removed all cadmium from metallothionein within ten minutes. CaNa3-diethylenetriamine pentaacetic acid × 5H2O, however, even after 60 min, had removed only 50% of the cadmium. The remaining cadmium was found distributed to the high molecular weight and lower molecular weight protein fractions.Abbreviations BAL 2,3-dimercaptopropanol - CHO Chinese hamster ovary cells - DMPS 2,3-dimercaptopropane-1-sulfonate - DMSA 2,3-dimercaptosuccinic acid - DTPA CaNa3-diethylenetriaminepentaacetic acid × 5 H2O - HMW proteins high molecular weight proteins - MT metallothionein  相似文献   

7.
Copper-induced metallothionein (MT) synthesis in Saccharomyces cerevisiae was investigated in order to associate this exclusively with Cu2+ in vivo, when cultured in nutrient medium containing other heavy metal ions. Expression of the CUP1 promoter/lacZ fusion gene was inhibited by all heavy metal ions tested, especially Cd2+ and Mn2+. By adding Cd2+ and Mn2+ at 10 M concentration, the -galactosidase activity decreased by about 80% and 50% of the maximum induction observed with 1 mM CuSO4, respectively. Furthermore, cell growth was markedly inhibited by combinations of 1 mM-Cu2+ and 1 M-Cd2+. Therefore, the yeast S. cerevisiae could not rely on MT synthesis as one of the copper-resistance mechanisms, when grown in a Cd2+ environment. In contrast, the presence of Mn2+ in the nutrient medium showed alleviation rather than growth inhibition by high concentrations of Cu2+. The recovery from growth inhibition by Mn2+ was due to decreased Cu2+ accumulation. Inhibitory concentrations of Co2+, Ni2+ and Zn2+ on expression of the CUP1p/lacZ fusion gene were at least one order of magnitude higher than that of Cd2+ and Mn2+. These results are discussed in relation to Cu2+ transport and Cu-induced MT synthesis in the copper-resistance mechanism of the yeast S. cerevisiae.  相似文献   

8.
Summary The effect of Zn-induced metallothionein (MT) on the toxicity, uptake, and subcellular distribution of cadmium (Cd) was examined in rat primary hepatocyte cultures and compared to results obtained earlier in this laboratory from intact animals. Hepatocytes were isolated and grown in monolayer culture for 22 h and subsequently treated with ZnCl2 (100 μM) for 24 h, which increased MT concentration about 15-fold. After Zn pretreatment, hepatocytes were exposed to Cd for 24 h. Cytotoxicity was assessed by enzyme leakage, intracellular potassium loss, and cellular glutathione content. The toxicity of Cd was much less in Zn-pretreated cells than in control cells, similar to that previously demonstrated in the intact animal. Zn pretreatment had no appreciable effect on the hepatocellular uptake of109Cd, but markedly altered its subcellular distribution, with more Cd accumulating in the cytosol and less in the nuclear, mitochondrial, and microsomal fractions. In the cytosol of Zn-pretreated cells, Cd was associated mainly with MT; in contrast, cytosolic Cd in control cells was mainly associated with non-MT macromolecules. Zn-induced changes in the subcellular distribution of Cd in vitro are identical to those observed in vivo in Zn-pretreated rats challenged with Cd. In summary, Zn pretreatment of rat primary hepatocyte cultures protects cells against Cd toxicity. Protection seems to be due to MT-promotes sequestration of Cd and reduction of the amount of Cd associated with critical organelles and proteins. These observations are similar to those noted in the whole animal. These results indicate that cultured hepatocytes are an ideal model for examining MT-induced tolerance to Cd hepatotoxicity. This work was supported by grant ES-01142, and WCK was supported by training grant ES-07079, both from the Public Health Service, Department of Health and Human Services.  相似文献   

9.
A glucose-tolerant strain of the cyanobacterium Synechocystis sp. PCC 6803, generally referred to as wild type, produces a hemolysin-like protein (HLP) located on the cell surface. To analyze the function of HLP, we constructed a mutant in which the hlp gene was disrupted. The growth rate of the mutant was reduced when the cells were stressed by treatment with CuSO4, CdCl2, ZnCl2, ampicillin, kanamycin, or sorbitol in liquid medium, suggesting that HLP may increase cellular resistance to the inhibitory effects of these compounds. Uptake assays with 109Cd2+ using the silicone–oil layer centrifugation technique revealed that both wild type and mutant cells were labeled with 109Cd2+ within 1 min. Although the total radioactivity was much higher in the wild-type cells, 109Cd2+ incorporation was clearly much higher in the mutant cells after adsorbed 109Cd2+ was removed from the cell surface by washing with EDTA. These findings suggest that HLP functions as a barrier against the adsorption of toxic compounds.  相似文献   

10.
In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 M Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.  相似文献   

11.
The toxic trace metal Cd2+ has been used to select a variant (designated Cdr) of the Chinese hamster cell (line CHO) resistant to the growth-inhibitory and cytotoxic effects of Cd2+. Resistance of the Cdr cell to Cd2+-mediated cytotoxicity is not due to a decreased capability of the Cdr cell to accumulate Cd2+ since Cd2+ uptake in the Cdr cell is indistinguishable from that in the CHO cell at both toxic and subtoxic Cd2+ exposures. Comparison of the relative capacities of these two cell types to induce specific low molecular weight Cd2+-binding proteins (metallothioneins) reveals that the Cdr cell has an increased capacity to induce metallothionein and to sequester intracellular Cd2+ in metallothioneins. These results suggest that the greater competence of the Cdr cell to induce metallothionein is a major factor in the Cd2+-resistant phenotype of the variant.  相似文献   

12.
The effects of HgCl2 on urinary excretion of Zn, Cu and metallothionein at different time intervals were observed in male Wistar rats. The rats were given a daily intraperitoneal injection of203HgCl2 (0.5 or 1.0 mg Hg kg–1) for 2 days.203Hg, Zn, Cu and metallothionein in urine, kidney and liver were analyzed. Significant increases in urinary Zn and Cu concentrations were found in HgCl2-dosed groups. Elevated urinary Zn and Cu concentrations were accompanied by an increased metallothionein excretion in urine at different time periods. Zn concentration in urine remained elevated during the entire observation period of 7 days. There were also increased concentrations of Cu and Zn in the renal cortex in one of the two exposed groups. The results indicate that urinary Cu and Zn are related to the manifestation of renal toxicity and/or the synthesis of metallothionein in kidney induced by mercury.  相似文献   

13.
14.
Adult female frogs Rana ridibunda were exposed to 50 and 100 ppm of Cu (as CuCl2) dissolved in water for 5, 15 and 30 days. We measured the Cu content in the liver, kidneys, ventral skin, and large intestine. Hepatic metallothionein (MT) was also measured and we identified by elution the type of proteins bound to copper. Gross morphological characteristics of the frogs were not affected by Cu accumulation. Cu uptake took place first across the skin, then accumulated first in the large intestine, and then in the liver which was continuously accumulating Cu at all exposure concentrations and times. The highest concentration of the metal was recorded in the kidneys at 30 days and 100 ppm exposure. It appears that the kidneys act as the secondary route of Cu detoxification, probably after a Cu overload of liver. The concentration of hepatic MT increased with the increase of Cu concentration in liver at the 5th and 15th day of exposure but we observed a decrease by the end of the experiment. Cu was observed in the MT-fraction, and in the high-molecular weight protein fraction.  相似文献   

15.
The expression of metallothionein (MT) and heat shock protein gene families was investigated in normal and in HeLa-derived cadmium-resistant cells, named H454. In the absence of amplification of MT genes H454 cells accumulated elevated concentrations of cadmium ions and synthesized higher levels of MT proteins than unselected HeLa cells. Northern blot analyses revealed higher levels of MT mRNAs in the resistant cells than in wild-type cells after Cd2+and Zn2+exposure. Evaluation of the cytotoxic potential of the different metals confirmed the high resistance to cadmium of the H454 cells. Two proteins of the heat shock family, hsp70 and GRP78, were synthesized in Cd2+-exposed H454 cells at levels comparable to the ones present in Cd2+-treated normal cells. Northern blot analyses of the mRNA levels corresponding to these proteins revealed elevated expression of both hsp70 and GRP78 mRNAs in H454 cells upon exposure to cadmium ions and no response to zinc induction. These data suggest the existence in the H454 cells of a cadmium-specific pathway of regulation of MT and heat shock genes.  相似文献   

16.
The metal–thiolate connectivity of recombinant Cd7-MT10 metallothionein from the sea mussel Mytilus galloprovincialis has been investigated for the first time by means of multinuclear, multidimensional NMR spectroscopy. The internal backbone dynamics of the protein have been assessed by the analysis of 15N T 1 and T 2 relaxation times and steady state {1H}–15N heteronuclear NOEs. The 113Cd NMR spectrum of mussel MT10 shows unique features, with a remarkably wide dispersion (210 ppm) of 113Cd NMR signals. The complete assignment of cysteine Hα and Hβ proton resonances and the analysis of 2D 113Cd–113Cd COSY and 1H–113Cd HMQC type spectra allowed us to identify a four metal–thiolate cluster (α-domain) and a three metal–thiolate cluster (β-domain), located at the N-terminal and the C-terminal, respectively. With respect to vertebrate MTs, the mussel MT10 displays an inversion of the α and β domains inside the chain, similar to what observed in the echinoderm MT-A. Moreover, unlike the MTs characterized so far, the α-domain of mussel Cd7-MT10 is of the form M4S12 instead of M4S11, and has a novel topology. The β-domain has a metal–thiolate binding pattern similar to other vertebrate MTs, but it is conformationally more rigid. This feature is quite unusual for MTs, in which the β-domain displays a more disordered conformation than the α-domain. It is concluded that in mussel Cd7-MT10, the spacing of cysteine residues and the plasticity of the protein backbone (due to the high number of glycine residues) increase the adaptability of the protein backbone towards enfolding around the metal–thiolate clusters, resulting in minimal alterations of the ideal tetrahedral geometry around the metal centres.  相似文献   

17.
Metallothionein (MT) is a ubiquitous mammalian protein comprising 61 or 62 nonaromatic amino acids of which 20 are cysteine residues. The high sulfhydryl content imparts to this protein a unique and remarkable ability to bind multiple metal ions in structurally significant metal–thiolate clusters. MT can bind seven divalent metal ions per protein molecule in two domains with exclusive tetrahedral metal coordination. The domain stoichiometries for the M7S20 structure are M4(Scys)11 (α domain) and M3(Scys)9 (β domain). Up to 12 Cu(I) ions can displace the 7 Zn2+ ions bound per molecule in Zn7–MT. The incoming Cu(I) ions adopt a trigonal planar geometry with domain stoichiometries for the Cu12S20 structure of Cu6(Scys)11 and Cu6(Scys)9 for the α and β domains, respectively. The circular dichroism (CD) spectra recorded as Cu+ is added to Zn7–MT to form Cu12–MT directly report structural changes that take place in the metal binding region. The spectrum arises under charge transfer transitions between the cysteine S and the Cu(I); because the Cu(I)–thiolate cluster units are located within the chiral binding site, intensities in the CD spectrum are directly related to changes in the binding site. The CD technique clearly indicates stoichiometries of several Cu(I)–MT species. Model Cu(I)–thiolate complexes, using the tripeptide glutathione as the sulfhydryl source, were examined by CD spectroscopy to obtain transition energies and the Cu(I)–thiolate coordination geometries which correspond to these bands. Possible structures for the Cu(I)–thiolate clusters in the α and β domains of Cu12–MT are proposed. © 1994 Wiley-Liss, Inc.  相似文献   

18.
Zinc, cadmium, and copper are known to interact in many transport processes, but the mechanism of inhibition is widely debated, being either competitive or noncompetitive according to the experimental model employed. We investigated the mechanisms of inhibition of zinc transport by cadmium and copper using renal proximal cells isolated from rabbit kidney. Initial rates of65Zn uptake were assessed after 0.5 min of incubation. The kinetics parameters of zinc uptake obtained at 20°C were a Jmax of 208.0±8.4 pmol· min−1·(mg protein)−1, aK m of 15.0±1.5 μM and an unsaturable constant of 0.259±0.104 (n=8). Cadmium at 15 μM competitively inhibited zinc uptake. In the presence of 50 μM cadmium, or copper at both 15 and 50 μM, there was evidence of noncompetitive inhibition. These data suggest that zinc and cadmium enter renal proximal cells via a common, saturable, carrier-mediated process. The mechanisms of the noncompetitive inhibition observed at higher concentrations of cadmium or with copper require further investigation, but may involve a toxic effect on the cytoskeleton.  相似文献   

19.
Most crustacean metallothioneins (MTs) contain 18 Cys residues and bind six divalent metal ions. The copper-specific CuMT-2 (MTC) of the blue crab Callinectes sapidus with 21 Cys residues, of which six are organized in two uncommon Cys-Cys-Cys sequences, represents an exception. However, its metal-binding properties are unknown. By spectroscopic and spectrometric techniques we show that all 21 Cys residues of recombinant MTC participate in the binding of Cu(I), Zn(II), and Cd(II) ions, indicating that both Cys triplets act as ligands. The fully metallated M8 II–MTC (M is Zn, Cd) form possesses high- and low-affinity metal binding sites, as evidenced by the formation of Zn6–MTC and Cd7–MTC species from M8 II–MTC after treatment with Chelex 100. The NMR characterization of Cd7–MTC suggests the presence of a two-domain structure, each domain containing one Cys triplet and encompassing either the three-metal or the four-metal thiolate cluster. Whereas the metal–Cys connectivities in the three-metal cluster located in the N-terminal domain (residues 1–31) reveal a Cd3Cys9 cyclohexane-like structure, the presence of dynamic processes in the C-terminal domain (residues 32–64) precluded the determination of the organization of the four-metal cluster. Absorption and circular dichroism features accompanying the stepwise binding of Cu(I) to MTC suggest that all 21 Cys are involved in the binding of eight to nine Cu(I) ions (Cu8–9–MTC). The subsequent generation of Cu12–MTC involves structural changes consistent with a decrease in the Cu(I) coordination number. Overall, the metal-binding properties of MTC reported here contribute to a better understanding of the role of Cys triplets in MTs.  相似文献   

20.
This article is based on data on the levels of metals (Cd, Zn, Cu) and metallothionein (MT) determined radiochemically with203Hg in renal cortex and liver of 137 autopsy cases. From this number, for 23 cases, the gel filtration of the cytoplasmic fraction of the organs was performed. The molar content of metals in the MT fraction (Sephadex G-50) amounted to 46.9, 50.2, and 2.0% for Cd, Zn, and Cu in renal cortex, respectively, and to 8.3, 83.6, and 9.1% for Cd, Zn, and Cu in the liver, respectively. In parallel with the increase of Cd and MT in renal cortex, increasing saturation was found of the MT fraction by Cd, occurring at the expense of Zn and Cu. Equimolar amounts of Cd and Zn in the MT fraction are found at Cd level of 0.5 μmol Cd/g wet wt of renal cortex. In the liver, analogous dependency (elevation of %Zn, depression of %Cd and %Cu) were observed in relation to Zn and MT levels in this organ. The basic level of Zn (not bound with MT) was estimated at 0.5 μmol/g for both renal cortex and liver. A deficit of non-MT Zn in kidneys is proposed as an alternative mechanism of toxic Cd action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号