首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The different psychomotor-stimulant effects of cocaine, GBR12909, and benztropine may partially stem from their different molecular actions on the dopamine transporter (DAT). To explore this possibility, we examined binding of these inhibitors to mutated DATs with altered Na(+) dependence of DAT activities and with enhanced binding of a cocaine analog, [(3)H]2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (CFT). In [(3)H]CFT competition assays with intact cells, the mutation-induced change in the ability of Na(+) to enhance the apparent affinity of CFT, cocaine, GBR12909, and benztropine was inhibitor-independent. Thus, for the four inhibitors, the curve of [Na(+)] versus apparent ligand affinity was steeper at W84L compared with wild type, shallower at D313N, and flat at W84LD313N. At each mutant, the apparent affinity of CFT and cocaine was enhanced regardless of whether Na(+) was present. However, the apparent affinity of GBR12909 and benztropine for W84L was reduced in the absence of Na(+) but near normal in the presence of 130 mm Na(+), and that for D313N and W84LD313N was barely changed. At the single mutants, the alterations in Na(+) dependence and apparent affinity of the four inhibitors were comparable between [(3)H]CFT competition assays and [(3)H]dopamine uptake inhibition assays. These results demonstrate that DAT inhibitors producing different behavioral profiles can respond in an opposite way when residues of the DAT protein are mutated. For GBR12909 and benztropine, their cocaine-like changes in Na(+) dependence suggest that they prefer a DAT state similar to that for cocaine. However, their cocaine-unlike changes in apparent affinity argue that they, likely via their diphenylmethoxy moiety, share DAT binding epitopes that are different from those for cocaine.  相似文献   

2.
Abstract : Incubation of a crude synaptosomal fraction from rat striatum with GBR 12783 at 37°C produced an inhibition of the specific uptake of [3H]dopamine that increased with time. The inhibition increased when GBR 12783 was present during preincubation and incubation (IC50 = 1.85 ± 0.1 nM) instead of incubation alone (IC50 = 25 ± 3.5 nM). Time-course studies of uptake inhibition demonstrated that a first collision transporter-inhibitor complex (TI) was formed immediately after addition of GBR 12783 so that the initial uptake velocity (Vo) decreased for increasing concentrations of inhibitor (Ki≥ 20 nM). TI slowly isomerized to a more stable complex TI* (K*i≤ 5 nM) with a value of t1/2 = 20-270 s. Fits of data to model 2 in which the steady-state uptake (VS) is set to zero were generally preferred, suggesting that formation of TI* could tend to irreversibility, as a consequence of a very low reverse isomerization. As expected, k, Vo, and VS tended to steady-state values in an asymptotic manner for high concentrations of GBR 12783. GBR 12783 at 2.5 nM produced a mixed inhibition of the uptake, with an increase in KM and a decrease in Vmax ; these effects were improved for 10 nM GBR 12783 and at 20°C. These results are discussed in relation to previous data concerning [3H]GBR 12783 binding. The present work gives the first experimental demonstration that dopamine uptake blockers can act according to a two-step mechanism of inhibition ; this is of great interest, because these inhibitors can oppose the effects of cocaine or amphetamine on the transporter according to a reaction that is partly nondependent on the concentration of the abused agent.  相似文献   

3.
A series of N-aromatic, N-heteroaromatic, and oxygenated N-phenylpropyl derivatives of 1-(2-benzhydryloxyethyl)-piperazine and 1-[2-[bis-(4-fluorophenyl)methoxy]ethyl]piperazine, analogues of GBR 12909 (1a) and 12935 (1b), was synthesized and examined for their dopamine (DAT) and serotonin (SERT) transporter binding properties. One of these compounds, racemic 3-[4-(2-benzhydryloxyethyl)piperazin-1-yl]-1-(3-fluorophenyl)-propan-1-ol (33), had DAT affinity as good as, or better than, GBR 12909 and 12935, and was more selective for DAT over SERT than the GBR compounds. Both trans- (43) and cis- (47) (+/-)-2-(4-[2-[bis-(4-fluorophenyl)-methoxy]ethyl]piperazin-1-ylmethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-1-ol had relatively good SERT selectivity and, as well, showed high affinity for SERT.  相似文献   

4.
In membrane preparations, CFT, a phenyltropane cocaine analog, and dopamine (DA) interact with the recombinant human dopamine transporter (hDAT) in Na+ -free medium. Na+ markedly increased the transporter's affinity for CFT, but had little or no effect on DA potency for inhibiting CFT binding. Raising [Na+ ] from 20 to 155 mm reduced Li+ -induced increase in DA K (i), but not CFT K (d). The presence of 155 mm Na+ enhanced the tolerance to low pH of CFT Kd but not DA Ki. Leucine substitution for tryptophan 84 (W84L) in transmembrane domain (TM) 1 or asparagine substitution for aspartate 313 (D313N) in TM 6 did not or only modestly enhance the affinity of Na+ -independent CFT binding, and retained the near normal ability of DA, Li+, K+, or H+ to inhibit this binding. However, the mutations significantly enhanced the Na+ stimulation of CFT binding as well as the Na+ antagonism against Li+ and H+ inhibition of CFT binding. In contrast, the mutations neither changed the Na+ -insensitive feature of DA Ki nor enhanced the Na+ protection of DA Ki against Li+ 's inhibitory effect, though they caused Na+ protection of DA Ki against H+ 's inhibitory action. These results are consistent with the existence of binding conformations for DA that are distinguishable from those for CFT, and with a differential association of cation interactions with DA and CFT binding. The mutations likely alter Na+ -bound state(s) of hDAT, preferentially strengthening the positive allosteric coupling between Na+ and CFT binding, and reducing the impact of Li+ or H+ on the CFT binding.  相似文献   

5.
A series of optically pure phenyl-and non-phenyl-substituted 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(2-hydroxypropyl)piperazines was synthesized and their binding affinity for dopamine transporter (DAT) was investigated. The analogues with a hydroxyl group in the S configuration were more selective for the DAT over the serotonin transporter (SERT) than the corresponding R enantiomers. Compound (+)-11 showed high affinity and selectivity for DAT over the SERT and, therefore, is a potential candidate for the development of a long-acting cocaine abuse therapeutic agent.  相似文献   

6.
A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.  相似文献   

7.
Synthesis of a series of pure S-(+)-2beta-carboalkoxy-3alpha-[bis(4-fluorophenyl)methoxy]tropanes (>99% ee) was achieved by employing a chiral amine-induced asymmetric reaction of tropinone with methyl cyanoformate as the key step. In this series, all of the S-(+)-enantiomers were 2-fold more potent than their racemic mixtures and all displayed high-affinity binding for DAT (K(i)=13-40 nM). These data support previous findings of significant divergence in structural requirements for high-affinity DAT binding among tropane-based inhibitors. Furthermore, the 2-substituent in the 3alpha-[bis(4-fluorophenyl)methoxy]tropane series is well tolerated at the DAT but not at SERT (K(i)=690-2040 nM), or muscarinic M(1) receptors (K(i)=133-4380 nM) resulting in highly selective DAT ligands that may provide new leads toward a cocaine-abuse therapeutic.  相似文献   

8.
Atypical antipsychotic properties of 4-(4-fluorobenzylidene)-1-[2-[5-(4-fluorophenyl)-1H-pyrazol-4-yl]ethyl] piperidine (NRA0161) were investigated by in vitro receptor affinities, in vivo receptor occupancies and findings were compared with those of risperidone and haloperidol in rodent behavioral studies. In in vitro receptor binding studies, NRA0161 has a high affinity for human cloned dopamine D(4) and 5-HT(2A) receptor with Ki values of 1.00 and 2.52 nM, respectively. NRA0161 had a relatively high affinity for the alpha(1) adrenoceptor (Ki; 10.44 nM) and a low affinity for the dopamine D(2) receptor (Ki; 95.80 nM). In in vivo receptor binding studies, NRA0161 highly occupied the 5-HT(2A) receptor in rat frontal cortex. In contrast, NRA0161 did not occupy the striatal D(2) receptor. In behavioral studies, NRA0161, risperidone and haloperidol antagonized the locomotor hyperactivity in mice, as induced by methamphetamine (MAP). At a higher dosage, NRA0161, risperidone and haloperidol dose-dependently antagonized the MAP-induced stereotyped behavior in mice and NRA0161 dose-dependently and significantly induced catalepsy in rats. The ED(50) value in inhibiting the MAP-induced locomotor hyperactivity was 30 times lower than that inhibiting the MAP-induced stereotyped behavior and 50 times lower than that which induced catalepsy.These findings suggest that NRA0161 may have atypical antipsychotic activities yet without producing extrapyramidal side effects.  相似文献   

9.
The metabolism mechanism of (S)-N-[1-(3-morpholin-4ylphenyl)ethyl]-3-phenylacrylamide, mediated by CYP3A4 Cytochrome has been investigated by density functional QM calculations aided with molecular mechanics/molecular dynamics simulations. Two different orientations of phenyl ring for substrate approach toward oxyferryl center, imposing two subsequent rearrangement pathways have been investigated. Starting from σ-complex in perpendicular orientation enzymatic mechanism involves consecutive proton shuttle intermediate, which further leads to the formation of alcohol and ketone. Parallel conformation leads solely to ketone product by 1,2 hydride shift. Although parallel and perpendicular σ-complexes are energetically equivalent both for the gas phase or PCM solvent model, molecular dynamics studies in full CYP3A4 environment show that perpendicular conformation of the σ-complex should be privileged, stabilized by hydrophobic interactions of phenylacrylamide chain. After assessing probability of the two conformations we postulate that the alcohol, accessible with the lowest energy barriers should be the major metabolite for studied substrate and CYP3A4 enzyme. Figure Orientation of phenyl ring towards porphyrin plane selected by substrate interaction with enzymatic cavity channels enzymatic reaction  相似文献   

10.
The antipsychotic profile of 5-[2-[4-(6-fluoro-1H-indole-3-yl)piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (NRA0562) was investigated using the conditioned avoidance test in rats. NRA0562 is a putative "atypical" antipsychotic agent with moderate to high affinities for dopamine D(1), D(2), D(4), 5-hydroxytryptamine(2A) receptors and alpha(1) adrenoceptor. NRA0562 (1 and 3 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response. Likewise other atypical antipsychotics such as risperidone (1 and 3 mg/kg, p.o.) and clozapine (100 mg/kg, p.o.) dose-dependently and significantly impaired the conditioned avoidance response in rats. In addition, typical antipsychotics, haloperidol (1 and 3 mg/kg, p.o.) potently impaired the conditioned avoidance response.These results suggest that antipsychotic profile of NRA0562 is consistent with profiles of clozapine or risperidone and may be considered an atypical antipsychotic agent.  相似文献   

11.
Abstract: The present study examines the interaction of Na+ and K+ with the binding of the cocaine analogue 3β-(4-[125I]iodophenyl)tropane-2β-carboxylic acid isopropyl ester to dopamine transporters (DATs) in rat striatal synaptosomal membranes at 37°C. The binding increases with [Na+] from 10 to 100 mM and decreases with higher [Na+]. The presence of K+ reduces the maximal stimulatory effect of Na+ and causes a nonlinear EC50 shift for Na+. K+ strongly inhibits the binding at low [Na+]. Increasing [Na+] produces a linear IC50 shift for K+. Saturation analysis indicates a single binding site changing its affinity for the radioligand depending on [K+]/[Na+] ratio in the assay buffer. A reduced Bmax was observed in the presence of 10 mM Na+ and 30 mM K+. Both high [Na+] and high [K+] accelerate the dissociation of the binding, and K+-induced acceleration was abolished by increasing [Na+]. Least squares model fitting of equilibrium data and kinetic analysis of dissociation rates reveal competitive interactions between Na+ and K+ at two sites allosterically linked on the DAT: One site mediates the stimulatory effect of Na+, and the other site involves the radioligand binding and the inhibitory effect of cations on the binding. Various uptake blockers and substrates, dopamine in particular, display reduced potency in inhibiting the binding at a higher [K+]/[Na+] ratio.  相似文献   

12.
Acrylamide (S)-6, a potent and efficacious KCNQ2 (Kv7.2) opener, demonstrated significant activity in two models of neuropathic pain and in the formalin test, suggesting that KCNQ2 openers may be useful in the treatment of neuropathic pain including diabetic neuropathy.  相似文献   

13.
An efficient asymmetric synthesis of the chiral N-(3-chloro-2-hydroxypropyl)anilines (2a and 2b) was achieved through the regioselective ring-opening reaction of chiral epichlorohydrin with aniline. This was applied to an asymmetric synthesis of the enantiomers of 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 1 as a novel potent dopamine uptake inhibitor. Both enantiomers as trihydrochlorides, 4a.3HCl and 4b.3HCl, could be synthesized in good total yields and optical purities of 100% ee in three steps synthesis, respectively. The absolute configurations of 4a.3HCl and 4b.3HCl were determined using the modified Mosher's method with the related compounds, the intermediates (2a and 2b) and the free bases (4a and 4b). The analytical results indicated that 4a.3HCl and 4b.3HCl have the (S)- and (R)-configuration, respectively, and a series of reactions to provide them proceeded without the apparent influence on the stereochemistry at the chiral centers. In in vitro pharmacological evaluations, 4a.3HCl and 4b.3HCl showed potent dopamine transporter binding affinities, high dopamine, moderate serotonin, and weak norepinephrine uptake inhibitory activities, and 4a.3HCl exhibited a more potent and selective dopamine uptake inhibition over the serotonin or norepinephrine uptake inhibition as compared with 4b.3HCl. An ex vivo evaluation revealed that the oral administrations of both enantiomers at a dose of 30 mg/kg in rats displayed apparent dopamine uptake inhibitory activities and 4a.3HCl had a stronger tendency to inhibit dopamine uptake compared with 4b.3HCl.  相似文献   

14.
A library of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides (7a–al) have been designed, synthesized and screened for their anti-proliferative activity against some selected human cancer cell lines namely DU-145, A-549, MCF-7 and HeLa. Most of them have shown promising cytotoxicity against lung cancer cell line (A549), amongst them 7f was found to be the most potent anti-proliferative congener. Furthermore, 7f exhibited comparable tubulin polymerization inhibition (IC50 value 2.04 µM) to the standard E7010 (IC50 value 2.15 µM). Moreover, flow cytometric analysis revealed that this compound induced apoptosis via cell cycle arrest at G2/M phase in A549 cells. Induction of apoptosis was further observed by examining the mitochondrial membrane potential and was also confirmed by Hoechst staining as well as Annexin V-FITC assays. Furthermore, molecular docking studies indicated that compound 7f binds to the colchicine binding site of the β-tubulin. Thus, 7f exhibits anti-proliferative properties by inhibiting the tubulin polymerization through the binding at the colchicine active site and by induction of apoptosis.  相似文献   

15.
In vitro and in vivo pharmacological properties of 5-[2-[4-(6-fluoro-1H-indole-3-yl)piperidin-1-yl]ethyl]-4-(4-fluorophenyl)thiazole-2-carboxylic acid amide (NRA0562), a novel atypical antipsychotic, were investigated. NRA0562 showed high affinities for human cloned dopamine D(1), D(2), D(3) and D(4) receptors with Ki values of 7.09, 2.49, 3.48 and 1.79 nM. In addition, NRA0562 had high affinities for the 5-HT(2A) receptor and the alpha(1) adrenoceptor with Ki values of 1.5 and 0.56 nM, and moderate affinity for the histamine H(1) receptor. Using in vivo and ex vivo receptor binding studies in rats, we showed NRA0562 occupied frontal cortical 5-HT(2A) receptors and alpha(1) adrenoceptor potently, while occupancy of striatal dopamine D(2) receptor was moderate as were other atypical antipsychotics. NRA0562 dose-dependently inhibited methamphetamine (MAP)-induced locomotor hyperactivity in rats. At higher dosage, NRA0562 dose-dependently antagonized MAP-induced stereotyped behavior and induced catalepsy dose-dependently and significantly in rats. But, the ED(50) value in inhibiting MAP-induced locomotion hyperactivity was 10 times lower than that in inhibiting MAP-induced stereotyped behavior, and 30 times lower than that in inducing catalepsy. In addition, the potency of NRA0562 in antagonizing MAP-induced hyperactivity in rats was higher than that of other antipsychotics, clozapine, risperidone and olanzapine. NRA0562 had favorable properties in view of prediction of extrapyramidal side effects. As this antipsychotic has a unique profile with affinity and occupancy for receptors, we propose that NRA0652 may have unique atypical antipsychotic activities, and a moderate liability of extrapyramidal motor side effects seen in the treatment with classical antipsychotics.  相似文献   

16.
We describe the systematic optimization, focused on the improvement of CV-TI, of a series of CCR2 antagonists. This work resulted in the identification of 10 (((1S,3R)-1-isopropyl-3-((3S,4S)-3-methoxy-tetrahydro-2H-pyran-4-ylamino)cyclopentyl)(4-(5-(trifluoromethyl)pyridazin-3-yl)piperazin-1-yl)methanone) which possessed a low projected human dose 35-45 mg BID and a CV-TI = 3800-fold.  相似文献   

17.
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization.  相似文献   

18.
Abstract: Methyl 3β-(4-[125I]iodophenyl)tropane-2β-carboxylate ([123I]β-CIT) is a single photon emission computed tomographic radiotracer for in vivo labeling of dopamine (DA) and serotonin (5-HT) transporters. Single photon emission computed tomographic experiments in nonhuman primates showed that [123I]β-CIT in vivo binding to DA transporters had a much slower washout than binding to 5-HT transporters. This observation was not predicted from previously published in vitro studies. These studies, performed at 22°C in nonphysiological buffer, reported similar affinity of [125I]β-CIT for DA and 5-HT transporters. We now report [125I]β-CIT binding parameters to fresh rat membranes at 22°C and 37°C, in a buffer mimicking the composition of cerebrospinal fluid. At both temperatures, binding to DA transporters was best fit by a twosite model, whereas binding to 5-HT transporters was compatible with one population of sites. At 22°C, [125I]β-CIT showed similar affinity to high-affinity DA (0.39 n M ) and 5-HT transporter sites (0.47 n M ). Increasing the incubation temperature from 22°C to 37°C reduced binding to DA transporters by 60%, whereas binding to 5-HT transporters was only marginally affected. In vitro kinetic experiments failed to detect significant differences in on or off rates that could explain the observed in vivo kinetics. These experiments thus failed to explain [123 I]β-CIT in vivo uptake kinetics, suggesting the existence of specific factors affecting the in vivo situation.  相似文献   

19.
Neuraminidase has been considered as an important target for designing agents against influenza viruses. In a discovery of anti-influenza agents with epigoitrin as the initial lead compound, a series of 1-amino-2-alkanols were synthesized and biologically evaluated. The in vitro evaluation indicated that (E)-1-amino-4-phenylbut-3-en-2-ol (C1) had better inhibitory activities than 2-amino-1-arylethan-1-ol derivatives. To our surprise, sulfonation of C1 with 4-methoxybenzenesulfonyl chloride afforded more active inhibitor II with up to 6.4?μM IC50 value against neuraminidase. Furthermore, docking of inhibitor II into the active site of NA found that the H atoms in both NH2 and OH groups of inhibitor II were the key factors for potency. Molecular docking research did not explained very well the observed structure-activity relationship (SAR) from amino acid residue level, but also aided the discovery of (E)-1-amino-4-phenylbut-3-en-2-ol derivatives as novel and potent NA inhibitors.  相似文献   

20.
We synthesized and identified four metabolites of acyl-coenzyme A:cholesterol O-acyltransferase (ACAT)-1 inhibitor, K-604 (1). Two of the metabolites M1 and M2, were prepared from 1 using a combination reagent of hydrogen peroxide and sodium tungstate with either phosphoric acid or trifluoroethanol as the solvent to control the regioselectivity. Upon exposure of 4b to tert-butyl hypochlorite at −78 °C, the monosulfoxidation afforded synthetic intermediate of M3 in excellent yield. The efficient synthesis of M4 was established. The in vitro metabolic study exhibited a high clearance value (720 μL/min/mg protein) of 1 using human liver microsomes. We orally administered a single dose of 10 mg/kg of 1 to monkeys because the in vitro metabolic patterns are quite similar. Fortunately, the drug concentration of 1 was much higher than those of M1, M2, M3 and M4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号