首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Zero‐truncated data arises in various disciplines where counts are observed but the zero count category cannot be observed during sampling. Maximum likelihood estimation can be used to model these data; however, due to its nonstandard form it cannot be easily implemented using well‐known software packages, and additional programming is often required. Motivated by the Rao–Blackwell theorem, we develop a weighted partial likelihood approach to estimate model parameters for zero‐truncated binomial and Poisson data. The resulting estimating function is equivalent to a weighted score function for standard count data models, and allows for applying readily available software. We evaluate the efficiency for this new approach and show that it performs almost as well as maximum likelihood estimation. The weighted partial likelihood approach is then extended to regression modelling and variable selection. We examine the performance of the proposed methods through simulation and present two case studies using real data.  相似文献   

2.
We propose parametric regression analysis of cumulative incidence function with competing risks data. A simple form of Gompertz distribution is used for the improper baseline subdistribution of the event of interest. Maximum likelihood inferences on regression parameters and associated cumulative incidence function are developed for parametric models, including a flexible generalized odds rate model. Estimation of the long-term proportion of patients with cause-specific events is straightforward in the parametric setting. Simple goodness-of-fit tests are discussed for evaluating a fixed odds rate assumption. The parametric regression methods are compared with an existing semiparametric regression analysis on a breast cancer data set where the cumulative incidence of recurrence is of interest. The results demonstrate that the likelihood-based parametric analyses for the cumulative incidence function are a practically useful alternative to the semiparametric analyses.  相似文献   

3.
In many biometrical applications, the count data encountered often contain extra zeros relative to the Poisson distribution. Zero‐inflated Poisson regression models are useful for analyzing such data, but parameter estimates may be seriously biased if the nonzero observations are over‐dispersed and simultaneously correlated due to the sampling design or the data collection procedure. In this paper, a zero‐inflated negative binomial mixed regression model is presented to analyze a set of pancreas disorder length of stay (LOS) data that comprised mainly same‐day separations. Random effects are introduced to account for inter‐hospital variations and the dependency of clustered LOS observations. Parameter estimation is achieved by maximizing an appropriate log‐likelihood function using an EM algorithm. Alternative modeling strategies, namely the finite mixture of Poisson distributions and the non‐parametric maximum likelihood approach, are also considered. The determination of pertinent covariates would assist hospital administrators and clinicians to manage LOS and expenditures efficiently.  相似文献   

4.
We present a graphical measure of assessing the explanatory power of regression models with a binary response. The binary regression quantile plot and an area defined by it are used for the visual comparison and ordering of nested binary response regression models. The plot shows how well various models explain the data. Two data sets are analyzed and the area representing the fit of a model is shown to agree with the usual likelihood ratio test.  相似文献   

5.
Xue  Liugen; Zhu  Lixing 《Biometrika》2007,94(4):921-937
A semiparametric regression model for longitudinal data is considered.The empirical likelihood method is used to estimate the regressioncoefficients and the baseline function, and to construct confidenceregions and intervals. It is proved that the maximum empiricallikelihood estimator of the regression coefficients achievesasymptotic efficiency and the estimator of the baseline functionattains asymptotic normality when a bias correction is made.Two calibrated empirical likelihood approaches to inferencefor the baseline function are developed. We propose a groupwiseempirical likelihood procedure to handle the inter-series dependencefor the longitudinal semiparametric regression model, and employbias correction to construct the empirical likelihood ratiofunctions for the parameters of interest. This leads us to provea nonparametric version of Wilks' theorem. Compared with methodsbased on normal approximations, the empirical likelihood doesnot require consistent estimators for the asymptotic varianceand bias. A simulation compares the empirical likelihood andnormal-based methods in terms of coverage accuracies and averageareas/lengths of confidence regions/intervals.  相似文献   

6.
We present a new modification of nonlinear regression models for repeated measures data with heteroscedastic error structures by combining the transform-both-sides and weighting model from Caroll and Ruppert (1988) with the nonlinear random effects model from Lindstrom and Bates (1990). The proposed parameter estimators are a combination of pseudo maximum likelihood estimators for the transform-both-sides and weighting model and maximum likelihood (ML) or restricted maximum likelihood (REML) estimators for linear mixed effects models. The new method is investigated by analyzing simulated enzyme kinetic data published by Jones (1993).  相似文献   

7.
Neural networks have received much attention in recent years mostly by non-statisticians. The purpose of this paper is to incorporate neural networks in a non-linear regression model and obtain maximum likelihood estimates of the network parameters using a standard Newton-Raphson algorithm. We use maximum likelihood estimators instead of the usual back-propagation technique and compare the neural network predictions with predictions of quadratic regression models and with non-parametric nearest neighbor predictions. These comparisons are made using data generated from a variety of functions. Because of the number of parameters involved, neural network models can easily over-fit the data, hence validation of results is crucial.  相似文献   

8.
This paper reviews the generalized Poisson regression model, the restricted generalized Poisson regression model and the mixed Poisson regression (negative binomial regression and Poisson inverse Gaussian regression) models which can be used for regression analysis of counts. The aim of this study is to demonstrate the quasi likelihood/moment method, which is used for estimation of the parameters of mixed Poisson regression models, also applicable to obtain the estimates of the parameters of the generalized Poisson regression and the restricted generalized Poisson regression models. Besides, at the end of this study an application related to this method for zoological data is given.  相似文献   

9.
Joint regression analysis of correlated data using Gaussian copulas   总被引:2,自引:0,他引:2  
Song PX  Li M  Yuan Y 《Biometrics》2009,65(1):60-68
Summary .  This article concerns a new joint modeling approach for correlated data analysis. Utilizing Gaussian copulas, we present a unified and flexible machinery to integrate separate one-dimensional generalized linear models (GLMs) into a joint regression analysis of continuous, discrete, and mixed correlated outcomes. This essentially leads to a multivariate analogue of the univariate GLM theory and hence an efficiency gain in the estimation of regression coefficients. The availability of joint probability models enables us to develop a full maximum likelihood inference. Numerical illustrations are focused on regression models for discrete correlated data, including multidimensional logistic regression models and a joint model for mixed normal and binary outcomes. In the simulation studies, the proposed copula-based joint model is compared to the popular generalized estimating equations, which is a moment-based estimating equation method to join univariate GLMs. Two real-world data examples are used in the illustration.  相似文献   

10.
Maximum likelihood estimation of the model parameters for a spatial population based on data collected from a survey sample is usually straightforward when sampling and non-response are both non-informative, since the model can then usually be fitted using the available sample data, and no allowance is necessary for the fact that only a part of the population has been observed. Although for many regression models this naive strategy yields consistent estimates, this is not the case for some models, such as spatial auto-regressive models. In this paper, we show that for a broad class of such models, a maximum marginal likelihood approach that uses both sample and population data leads to more efficient estimates since it uses spatial information from sampled as well as non-sampled units. Extensive simulation experiments based on two well-known data sets are used to assess the impact of the spatial sampling design, the auto-correlation parameter and the sample size on the performance of this approach. When compared to some widely used methods that use only sample data, the results from these experiments show that the maximum marginal likelihood approach is much more precise.  相似文献   

11.
Pepe MS  Cai T  Longton G 《Biometrics》2006,62(1):221-229
No single biomarker for cancer is considered adequately sensitive and specific for cancer screening. It is expected that the results of multiple markers will need to be combined in order to yield adequately accurate classification. Typically, the objective function that is optimized for combining markers is the likelihood function. In this article, we consider an alternative objective function-the area under the empirical receiver operating characteristic curve (AUC). We note that it yields consistent estimates of parameters in a generalized linear model for the risk score but does not require specifying the link function. Like logistic regression, it yields consistent estimation with case-control or cohort data. Simulation studies suggest that AUC-based classification scores have performance comparable with logistic likelihood-based scores when the logistic regression model holds. Analysis of data from a proteomics biomarker study shows that performance can be far superior to logistic regression derived scores when the logistic regression model does not hold. Model fitting by maximizing the AUC rather than the likelihood should be considered when the goal is to derive a marker combination score for classification or prediction.  相似文献   

12.
Summary .   Motivated by the spatial modeling of aberrant crypt foci (ACF) in colon carcinogenesis, we consider binary data with probabilities modeled as the sum of a nonparametric mean plus a latent Gaussian spatial process that accounts for short-range dependencies. The mean is modeled in a general way using regression splines. The mean function can be viewed as a fixed effect and is estimated with a penalty for regularization. With the latent process viewed as another random effect, the model becomes a generalized linear mixed model. In our motivating data set and other applications, the sample size is too large to easily accommodate maximum likelihood or restricted maximum likelihood estimation (REML), so pairwise likelihood, a special case of composite likelihood, is used instead. We develop an asymptotic theory for models that are sufficiently general to be used in a wide variety of applications, including, but not limited to, the problem that motivated this work. The splines have penalty parameters that must converge to zero asymptotically: we derive theory for this along with a data-driven method for selecting the penalty parameter, a method that is shown in simulations to improve greatly upon standard devices, such as likelihood crossvalidation. Finally, we apply the methods to the data from our experiment ACF. We discover an unexpected location for peak formation of ACF.  相似文献   

13.
This paper discusses a two‐state hidden Markov Poisson regression (MPR) model for analyzing longitudinal data of epileptic seizure counts, which allows for the rate of the Poisson process to depend on covariates through an exponential link function and to change according to the states of a two‐state Markov chain with its transition probabilities associated with covariates through a logit link function. This paper also considers a two‐state hidden Markov negative binomial regression (MNBR) model, as an alternative, by using the negative binomial instead of Poisson distribution in the proposed MPR model when there exists extra‐Poisson variation conditional on the states of the Markov chain. The two proposed models in this paper relax the stationary requirement of the Markov chain, allow for overdispersion relative to the usual Poisson regression model and for correlation between repeated observations. The proposed methodology provides a plausible analysis for the longitudinal data of epileptic seizure counts, and the MNBR model fits the data much better than the MPR model. Maximum likelihood estimation using the EM and quasi‐Newton algorithms is discussed. A Monte Carlo study for the proposed MPR model investigates the reliability of the estimation method, the choice of probabilities for the initial states of the Markov chain, and some finite sample behaviors of the maximum likelihood estimates, suggesting that (1) the estimation method is accurate and reliable as long as the total number of observations is reasonably large, and (2) the choice of probabilities for the initial states of the Markov process has little impact on the parameter estimates.  相似文献   

14.
Pan W  Chappell R 《Biometrics》2002,58(1):64-70
We show that the nonparametric maximum likelihood estimate (NPMLE) of the regression coefficient from the joint likelihood (of the regression coefficient and the baseline survival) works well for the Cox proportional hazards model with left-truncated and interval-censored data, but the NPMLE may underestimate the baseline survival. Two alternatives are also considered: first, the marginal likelihood approach by extending Satten (1996, Biometrika 83, 355-370) to truncated data, where the baseline distribution is eliminated as a nuisance parameter; and second, the monotone maximum likelihood estimate that maximizes the joint likelihood by assuming that the baseline distribution has a nondecreasing hazard function, which was originally proposed to overcome the underestimation of the survival from the NPMLE for left-truncated data without covariates (Tsai, 1988, Biometrika 75, 319-324). The bootstrap is proposed to draw inference. Simulations were conducted to assess their performance. The methods are applied to the Massachusetts Health Care Panel Study data set to compare the probabilities of losing functional independence for male and female seniors.  相似文献   

15.
Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as ‘nuisance’ variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this ‘conditional’ regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.  相似文献   

16.
Roy J  Lin X 《Biometrics》2000,56(4):1047-1054
Multiple outcomes are often used to properly characterize an effect of interest. This paper proposes a latent variable model for the situation where repeated measures over time are obtained on each outcome. These outcomes are assumed to measure an underlying quantity of main interest from different perspectives. We relate the observed outcomes using regression models to a latent variable, which is then modeled as a function of covariates by a separate regression model. Random effects are used to model the correlation due to repeated measures of the observed outcomes and the latent variable. An EM algorithm is developed to obtain maximum likelihood estimates of model parameters. Unit-specific predictions of the latent variables are also calculated. This method is illustrated using data from a national panel study on changes in methadone treatment practices.  相似文献   

17.
Ghosh D  Banerjee M  Biswas P 《Biometrics》2008,64(4):1009-1017
SUMMARY: In order to develop better treatment and screening programs for cancer prevention programs, it is important to be able to understand the natural history of the disease and what factors affect its progression. We focus on a particular framework first outlined by Kimmel and Flehinger (1991, Biometrics, 47, 987-1004) and in particular one of their limiting scenarios for analysis. Using an equivalence with a binary regression model, we characterize the nonparametric maximum likelihood estimation procedure for estimation of the tumor size distribution function and give associated asymptotic results. Extensions to semiparametric models and missing data are also described. Application to data from two cancer studies is used to illustrate the finite-sample behavior of the procedure.  相似文献   

18.
The Cox regression model is one of the most widely used models to incorporate covariates. The frequently used partial likelihood estimator of the regression parameter has to be computed iteratively. In this paper we propose a noniterative estimator for the regression parameter and show that under certain conditions it dominates another noniterative estimator derived by Kalbfleish and Prentice. The new estimator is demonstrated on lifetime data of rats having been subject to insult with a carcinogen.  相似文献   

19.
P F Thall 《Biometrics》1988,44(1):197-209
In many longitudinal studies it is desired to estimate and test the rate over time of a particular recurrent event. Often only the event counts corresponding to the elapsed time intervals between each subject's successive observation times, and baseline covariate data, are available. The intervals may vary substantially in length and number between subjects, so that the corresponding vectors of counts are not directly comparable. A family of Poisson likelihood regression models incorporating a mixed random multiplicative component in the rate function of each subject is proposed for this longitudinal data structure. A related empirical Bayes estimate of random-effect parameters is also described. These methods are illustrated by an analysis of dyspepsia data from the National Cooperative Gallstone Study.  相似文献   

20.
All recent analyses of the data on solid cancer incidence of the atomic bomb survivors are corrected for migration and random dose errors. In the usual treatment with grouped data and regression calibration, the calibration of doses depends on the used dose response. For solid cancers, it usually is linear. Here, an individual likelihood is presented which works without further adjustment for all dose responses. When the same assumptions are made as in the usual Poisson regression, equivalent results are obtained. But, the individual likelihood has the potential to use more detailed models for dose errors and to estimate non-linear dose responses without recalibration. As an example for the potential of the individual data set for the analysis of risk at low doses, signals for a saturating bystander effect are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号