首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glycerol and glucose utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozotocin-diabetic rats. In cells from diabetic rats, incorporation of [1,3-14C]glycerol into total phosphatidylcholine (PC), disaturated phosphatidylcholine (DSPC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) occurred to a greater degree by the glycerol 3-phosphate pathway as opposed to the dihydroxyacetone phosphate pathway. Total incorporation of glycerol into each of the major cellular phospholipids was increased up to 6-fold in cells from diabetic rats, while the total incorporation of glucose into the same lipids was decreased 2-fold. While the percentage of both glucose and glycerol carbons incorporated into the backbone of DSPC was increased in cells from diabetic rats, the percentage of carbons from both substrates incorporated into the fatty acid moieties was decreased. As a measure of DSPC synthesis, choline incorporation into DSPC was significantly decreased in type II cells from diabetic animals if the cells were incubated in the presence of glucose, palmitate and choline but not glycerol. Addition of 0.1 or 0.3 mM glycerol to the incubation medium restored choline incorporation to the control value in cells from diabetic rats, but did not affect the rate of choline incorporation into DSPC in cells from normal rats. These results suggest that exogenous glycerol can compensate for reduced glucose metabolism in type II cells of diabetic animals to maintain a constant rate of DSPC synthesis.  相似文献   

2.
To determine whether type II pneumocytes isolated from diabetic animals could serve as a useful model for the study of surfactant phospholipid biosynthesis and its regulation, type II pneumocytes were isolated from adult streptozotocin-diabetic rats and placed in short-term primary culture. On a DNA basis, total cellular disaturated phosphatidylcholine (disaturated PC) and phosphatidylglycerol (PG) were decreased 36 and 66%, respectively, in type II cells from diabetic animals. 7 days of insulin treatment of diabetic rats returned the cellular disaturated PC and PG content to control values and increased the total cellular phosphatidylethanolamine (PE) content by 51%. The rates of glucose and acetate incorporation into disaturated PC per unit DNA were reduced 32 and 38%, respectively, in cells isolated from diabetic rats, while glycerol incorporation was increased by 143%. Insulin treatment of diabetic rats returned the glucose and glycerol incorporation rates to control values and increased acetate incorporation into disaturated PC by 66%. These data suggest that the biosynthesis of surfactant is altered by both diabetes mellitus and in vivo insulin treatment.  相似文献   

3.
Glycerol kinase activity and glycerol utilization by rat granular pneumocytes were determined in order to investigate the rate-limiting step for glycerol incorporation into lung lipids. Granular pneumocytes were isolated in primary culture following trypsinization of rat lungs. Glycerol kinase activity was 8.2 nmol/h per 10(6) cells. Incorporation of [1,3-14C]glycerol into total cell lipids was 0.29 nmol/h per 10(6) cells. In the presence of saturating glycerol concentration, production of 3H2O from [2-3H]glycerol was 13 times greater than incorporation of [14C]glycerol into lipids. Glycerol phosphate dehydrogenase activity in isolated cells was approximately 10 times glycerol kinase activity. In the presence of 5.6 mM glucose, glycerol incorporation into lipids was decreased 79% and detritiation of glycerol was decreased 34%. This effect of glucose was due to a 25% increase in cell glycerol 3-phosphate content, resulting in dilution of the precursor pool and possible inhibition of glycerol phosphorylation. These results indicate that the relatively limited incorporation of glycerol into surfactant phospholipids by lung epithelial cells reflects the relatively high rate of glycerol 3-phosphate oxidation.  相似文献   

4.
A possible role for an acidic subcellular compartment in biosynthesis of lung surfactant phospholipids was evaluated with granular pneumocytes in primary culture. Incubation with chloroquine (100μm) was used to perturb this compartment. With control cells, incorporation of [9,10-3H]palmitic acid into total lipids and into total phosphatidylcholines increased linearly with time up to 4h. Total incorporation into phosphatidylcholine during a 1h incubation was 999+85pmol of [9,10-3H]palmitic acid, 458±18pmol of [1-14C]oleic acid and 252±15pmol of [U-14C]glucose per μg of phosphatidylcholine phosphorus. The cellular content of either disaturated phosphatidylcholine or total phosphatidylcholines did not change during a 2h incubation with chloroquine. In the presence of chloroquine, the specific radioactivity of [3H]palmitic acid in disaturated phosphatidylcholine increased by 40%, and that of disaturated-phosphatidylcholine fatty acids from [U-14C]glucose increased by 125%. Incorporation of [1-14C]oleic acid into phosphatidylcholine was decreased by chloroquine by 79% and 33% in the presence or absence of palmitic acid respectively. Chloroquine stimulated phospholipase activity in intact cells, and in sonicated cells at pH4.0, but not at pH8.5. The observations indicate that chloroquine stimulates synthesis of disaturated phosphatidylcholine in granular pneumocytes from fatty acids, both exogenous and synthesized de novo, which can be due to stimulation of acidic phospholipase. This stimulation of acidic phospholipase A activity by chloroquine appears to be coupled to the synthesis of disaturated phosphatidylcholine, thereby enhancing remodelling of phosphatidylcholine synthesized de novo. Our findings, therefore, implicate the involvement of an acidic subcellular compartment in the remodelling pathway of disaturated phosphatidylcholine synthesis by granular pneumocytes.  相似文献   

5.
Organotypic cultures of fetal type II epithelial cells were incubated in media containing insulin at concentrations ranging from 10 to 400 microunits/ml. Exposure to insulin resulted in increased glucose uptake from the media and in the rate of glucose conversion to CO2. Furthermore, both glucose uptake and CO2 production were dependent on the glucose concentration in the media. Surfactant and residual phosphatidylcholine fractions were isolated from the organotypic cultures by sucrose density centrifugation. The presence of low doses of insulin (10-25 microunits/ml) caused a significant increase in the incorporation of glucose into both surfactant and residual phosphatidylcholine. Insulin at levels of 100 microunits/ml or higher resulted in a significant decrease in glucose incorporation into both phosphatidylcholine fractions. Increasing the media glucose concentration from 5.6 to 20 mM caused a 2- to 2.5-fold increase in glucose utilization for surfactant and residual phospholipid synthesis, but did not produce any significant changes in choline incorporation into either surfactant or residual phosphatidylcholine. The addition of 400 microunits/ml of insulin to media containing 20 mM glucose, however, resulted in a 20% decrease in choline incorporation into surfactant phosphatidylcholine but had no effect on choline incorporation into residual phosphatidylcholine. These results suggest that insulin is an important hormone regulating fetal lung maturation and that hyperinsulinemia may be responsible for the delayed lung development in infants of diabetic mothers.  相似文献   

6.
The effect of human urogastrone on lung phospholipids in fetal rabbits   总被引:2,自引:0,他引:2  
Previous in vivo studies have demonstrated that mouse epidermal growth factor (EGF) can enhance fetal lung maturation. We have examined the effect of urogastrone, the human equivalent of mouse EGF and a related growth factor, on the phospholipid profile of fetal rabbit lung lavage and its action on fetal rabbit Type II pneumocytes in culture. Urogastrone (1 or 8 micrograms) given i.p. to fetal rabbits on day 25 of gestation resulted in increased total phospholipid, phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine contents, increased phosphatidylinositol and phosphatidylethanolamine as a proportion of phospholipid and decreased sphingomyelin as a proportion of phospholipid in lung lavages on day 28. These changes were unaccompanied by alterations in body weight or lung weight, DNA or protein concentrations. Urogastrone (16 micrograms) resulted in increased fetal deaths. Phospholipid profiles on day 27 were unchanged after fetal administration of urogastrone (1 microgram) on day 25. Urogastrone (0.01 and 0.1 ng/ml) added to fetal rabbit Type II pneumocytes in culture for 24 h enhanced the incorporation of radiolabelled choline and thymidine into phosphatidylcholine and DNA respectively. These findings indicate that human urogastrone can alter the phospholipid composition of the rabbit lung in a similar manner to that which occurs during maturation of the lung surfactant system in late pregnancy. This effect can be achieved, at least in part, by a direct action on Type II pneumocytes.  相似文献   

7.
When type II pneumonocytes from adult rats were maintained in a medium that lacked choline, the incorporation of [14C]glycerol into phosphatidylcholine was not greatly diminished during the period that the cells displayed characteristics of type II pneumonocytes. Cells that were maintained in choline-free medium that contained choline oxidase and catalase, however, became depleted of choline and subsequent synthesis of phosphatidylcholine by these cells was responsive to choline in the extracellular medium. Incorporation of [14C]glycerol into phosphatidylcholine by choline-depleted cells was stimulated maximally (approx. 6-fold) by extracellular choline at a concentration (0.05 mM) that also supported the greatest incorporation into phosphatidylglycerol. The incorporation of [14C]glycerol into other glycerophospholipids by choline-depleted cells was not increased by extracellular choline. When cells were incubated in the presence of [3H]cytidine, the choline-dependent stimulation of the synthesis of phosphatidylcholine and phosphatidylglycerol was accompanied by an increased recovery of [3H]CMP. This increased recovery of [3H]CMP reflected an increase in the intracellular amount of CMP from 48 +/- 9 to 76 +/- 16 pmol/10(6) cells. Choline-depleted cells that were exposed to [3H]choline contained [3H]CDP-choline as the principal water-soluble choline derivative. As the extracellular concentration of choline was increase, however, the amount of 3H in phosphocholine greatly exceeded that in all other water-soluble derivatives. Choline-depletion of cells resulted in an increase in the specific activity of CTP:phosphocholine cytidylyltransferase in cell homogenates (from 0.40 +/- 0.15 to 1.31 +/- 0.20 nmol X min-1 X mg of protein-1). These data are indicative that the biosynthesis of phosphatidylcholine is integrated with that of phosphatidylglycerol and are consistent with the proposed involvement of CMP in this integration. The choline-depleted type II pneumonocyte provides a new model for investigating the regulation of CTP:phosphocholine cytidylyltransferase activity.  相似文献   

8.
Lipid and lipoprotein metabolism in Hep G2 cells   总被引:6,自引:0,他引:6  
Lipid composition, lipid synthesis and lipoprotein secretion by the Hep G2 cell line have been studied with substrate and insulin supplied under different conditions. The lipid composition of Hep G2 cells was close to that of normal human liver, except for a higher content in sphingomyelin (P less than 0.005) and a lower phosphatidylcholine/sphingomyelin ratio. Most of the [14C]triacylglycerols secreted into the medium were recovered by ultracentrifugation at densities of 1.006 to 1.020 g/ml. The main apolipoproteins secreted were apo B-100 and apo A-I. Hep G2 mRNA synthesized in vitro the pro-apolipoproteins A-I and E. Triacylglycerol secretion was 7.38 +/- 1.04 micrograms/mg cell protein per 20 h with 5.5 mM glucose in the medium and increased linearly with glucose concentration. Oleic acid (1 mM) increased the incorporation of [3H]glycerol into the medium and cell triacylglycerols by 251 and 899%, with a concomitant increment in cell triacylglycerols and cholesterol ester. Insulin (1 mU or 7 pmol/ml) inhibited triacylglycerol secretion and [35S]methionine incorporation into secreted protein by 47 and 28%, respectively, with a corresponding increase in the cells. Preincubation of cells with 2.5-10 mM mevalonolactone decreased the incorporation of [14C]acetate into cholesterol 6.2-fold, indicating an inhibitory effect on HMG-CoA reductase. It is concluded that in spite of some differences between Hep G2 and normal human hepatocytes, this line offers an alternative and reliable model for studies on liver lipid metabolism.  相似文献   

9.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

10.
The effects of ethanolamine, choline, and different fatty acids on phospholipid synthesis via the CDP-ester pathways were studied in isolated rat intestinal villus cells. The incorporation of [14C]glucose into phosphatidylethanolamine was stimulated severalfold by the addition of ethanolamine and long-chained unsaturated fatty acids, while the addition of lauric acid inhibited the incorporation of radioactivity into phosphatidylethanolamine. At concentrations of ethanolamine higher than 0.2 mM, phosphoethanolamine accumulated, but the concentrations of CDP-ethanolamine and the incorporation of radioactivity into phospatidylethanolamine did not increase further. The incorporation of [14C]glucose into phosphatidylcholine responded in a way similar to that of phosphatidylethanolamine, except that a 10-fold higher concentration of choline was required for maximal stimulation. CCC inhibited the incorporation of choline into phosphatidylcholine. In contrast with hepatocytes, villus cells did not form phosphatidylcholine via phospholipid N-methylation. The data indicate that, in intestinal villus cells, the cytidylyltransferase reactions are rate limiting in the synthesis of phosphatidylethanolamine and probably also of phosphatidylcholine. The availability of diacylglycerol and its fatty acid composition may also significantly affect the rate of phospholipid synthesis.  相似文献   

11.
The incorporation of [3H]myo-inositol into individual phosphoinositides and of [3H]glycerol into glycerolipids was determined in sciatic nerve obtained from normal and streptozotocin diabetic rats and incubated in vitro. The uptake of inositol into lipid was approximately linear with time. More than 80% of the label was present in phosphatidylinositol with the remainder divided about equally between phosphatidylinositol phosphate and phosphatidylinositol-4,5-bisphosphate. Labeling was unchanged 2 weeks after induction of diabetes, but was reduced by 32% after 20 weeks of the disease. Glycerol incorporation occurred primarily into phosphatidylcholine and triacylglycerol and was depressed up to 45% into major phosphoglycerides in nerves from both 2- and 20-week diabetic animals. Triacylglycerol labeling was also substantially decreased, and the reduction was comparable in intact and epineurium free nerve, suggesting that a metabolically active pool of this compound, which is sensitive to hyperglycemia and/or insulin deficiency, is located in or immediately adjacent to the nerve fibers. The considerable decline in incorporation of these lipid precursors in diabetic nerve may be related to impaired inositol transport and to decrease overall energy utilization by the tissue.  相似文献   

12.
1. The formation of phosphatidylcholine from radioactive precursors was studied in adult rat lung alveolar type II epithelial cells in primary culture. 2. The incorporation of [Me-14C]choline into total lipids and phosphatidylcholine was stimulated by addition of palmitate, whereas the incorporation of [U-14C]glucose into phosphatidylcholine and disaturated phosphatidylcholine was stimulated by addition of choline. Addition of glucose decreased the absolute rate of incorporation of [1(3)-3H]glycerol into total lipids, phosphatidylcholine and disaturated phosphatidylcholine, decreased the percentage [1(3)-3H]glycerol recovered in phosphatidylcholine, but increased the percentage phosphatidylcholine label in the disaturated species. 3. At saturating substrate concentrations, the percentages of phosphatidylcholine radioactivity found in disaturated phosphatidylcholine after incubation with [1-(14)C]acetate (in the presence of glucose) [1-(14)C]palmitate (in the presence of glucose), [Me-14C]choline (in the presence of glucose and palmitate) and [U-14C]glucose (in the presence of choline and palmitate) were 78, 75, 74 and 90%, respectively. 4. Fatty acids stimulated the incorporation of [U-14C]glucose into the glycerol moiety of phosphatidylcholine. The degree of unsaturation of the added fatty acids was reflected in the distribution of [U-14C]glucose label among the different molecular species of phosphatidylcholine. It is suggested that the glucose concentration in the blood as related to the amount of available fatty acids and their degree of unsaturation may be factors governing the synthesis of surfactant lipids.  相似文献   

13.
In this work we have examined the effect of the oral administration of propionyl-L-carnitine (PLC) on the membrane phospholipid fatty acid turnover of erythrocytes from streptozotocin-induced diabetic rats. A statistically significant reduction in radioactive palmitate, oleate, and linoleate, but not arachidonate, incorporation into membrane phosphatidylcholine (PC) of diabetic rat erythrocytes with respect to control animals was found. Changes in radioactive fatty acid incorporation were also found in diabetic red cell phosphatidylethanolamine (PE), though they were not statistically significant. Oral propionyl-L-carnitine (PLC) treatment of diabetic rats partially restored the ability of intact red cells to reacylate membrane PC with palmitate and oleate, and reacylation with linoleate was fully restored. The analysis of the membrane phospholipid fatty acid composition revealed a consistent increase of linoleate levels in diabetic rat red cells, and a modest decrease of palmitate, oleate and arachidonate. The phospholipid fatty acid composition of diabetic red blood cells was not affected by the PLC treatment. Lysophosphatidylcholine acyl-CoA transferase (LAT) specific activity measured with either palmitoyl-CoA or oleyl-CoA was significantly reduced in diabetic erythrocyte membranes in comparison to controls. In addition LAT kinetic parameters of diabetic erythrocytes were altered. The reduced LAT activity could be partially corrected by PLC treatment of diabetic rats. Our data suggest that the impaired erythrocyte membrane physiological expression induced by the diabetic disease may be attenuated by the beneficial activity of PLC on the red cell membrane phospholipid fatty acid turnover.Abbreviations LAT lysophosphatidylcholine acyl-CoA transferase - PC phosphatidylcholine - PE phosphatidylethanolamine - PLC propionyl-L-carnitine - STZ streptozotocin  相似文献   

14.
Fetal rat lung removed at 15 days gestation and placed in organ culture incorporates choline into phosphatidylcholine. Addition of 10(-9) M dexamethasone resulted in increased rates of choline incorporation per micrograms protein after both 6 and 12 days culture. This concentration of dexamethasone did not increase tissue phosphatidylcholine or disaturated phosphatidylcholine. Thus, at a culture time when dexamethasone had a significant effect on choline incorporation, there was no change in either the total phospholipid or disaturated phosphatidylcholine content of the lung tissue. The transplacental administration of dexamethasone decreased fetal lung DNA and phospholipid content. At the mid-range dosage tested (400 micrograms), dexamethasone depressed DNA (51%) appreciably more than total phosphatidylcholine (28%) and disaturated phosphatidylcholine (33%). These results show that the hormone does not increase the total amount of surfactant per lung. The increased disaturated phosphatidylcholine per mg DNA results in an ostensible beneficial effect of dexamethasone on surfactant and may reflect an increased proportion of Type II cells in fetal lung both in vitro and in vivo following hormone exposure. Disaturated phosphatidylcholine per Type II alveolar cell is no doubt increased but the trade-off is fewer total cells in the lung.  相似文献   

15.
Glycerol is taken up by human muscle in vivo and incorporated into lipids, but little is known about regulation of glycerol metabolism in this tissue. In this study, we have analyzed the role of glycerol kinase (GlK) in the regulation of glycerol metabolism in primary cultured human muscle cells. Isolated human muscle cells exhibited lower GlK activity than fresh muscle explants, but the activity in cultured cells was increased by exposure to insulin. [U-(14)C]Glycerol was incorporated into cellular phospholipids and triacylglycerides (TAGs), but little or no increase in TAG content or lactate release was observed in response to changes in the medium glycerol concentration. Adenovirus-mediated delivery of the Escherichia coli GlK gene (AdCMV-GlK) into muscle cells caused a 30-fold increase in GlK activity, which was associated with a marked rise in the labeling of phospholipid or TAG from [U-(14)C]glycerol compared with controls. Moreover, GlK overexpression caused [U-(14)C]glycerol to be incorporated into glycogen, which was dependent on the activation of glycogen synthase. Co-incubation of AdCMV-GlK-treated muscle cells with glycerol and oleate resulted in a large accumulation of TAG and an increase in lactate production. We conclude that GlK is the limiting step in muscle cell glycerol metabolism. Glycerol 3-phosphate is readily used for TAG synthesis but can also be diverted to form glycolytic intermediates that are in turn converted to glycogen or lactate. Given the high levels of glycerol in muscle interstitial fluid, these finding suggest that changes in GlK activity in muscle can exert important influences on fuel deposition in this tissue.  相似文献   

16.
Hyperinsulinemia is common in obesity, but whether it plays a role in intramyocellular triglyceride (imcTG) buildup is unknown. In this study, hyperinsulinemic-euglycemic clamp experiments were performed in overnight-fasted lean and high-fat-fed obese rats, awake, to determine the effect of insulin on imcTG synthesis (incorporation of [(14)C]glycerol, [(14)C]glucose, and [(3)H]oleate). Insulin infusion at 25 (low insulin) and 100 (high insulin) pmol/kg/min increased plasma insulin by 5- and 16-fold, respectively, whereas plasma and intramyocellular glycerol, FFAs, triglycerides, and glucose levels were maintained at their basal levels by co-infusion of exogenous glycerol, FFAs, and triglycerides at fixed rates and glucose at varying rates. In obese rats, insulin suppressed incorporation of glycerol into the imcTG-glycerol moiety dose dependently (P < 0.01-P < 0.001) in gastrocnemius and tibialis anterior, but only the high insulin suppressed it in soleus (P < 0.05). The low insulin suppressed glucose incorporation into imcTG-glycerol in all three muscles (P = 0.01-P < 0.01). However, the low insulin did not affect (P > 0.05) and the high insulin suppressed (P < 0.05-P < 0.01) fatty acid incorporation into imcTG in all three muscles. Insulin also suppressed glycerol incorporation in lean rats (P < 0.01-P < 0.04). On the other hand, imcTG pool size was not affected by insulin (P > 0.05). These observations suggest that acute hyperinsulinemia inhibits imcTG synthesis and thus does not appear to promote imcTG accumulation via the synthetic pathway, at least in the short term.  相似文献   

17.
1. Incubation of washed cells of Staphylococcus aureus with [1-14C]glycerol results in the incorporation of glycerol into the lipid fraction of the cells. The rate of incorporation is increased by the presence of glucose and amino acids. The presence of amino acids increases incorporation into the fraction containing O-amino acid esters of phosphatidylglycerol. 2. Glycerol, incorporated into washed cells by incubation with glycerol, glucose and amino acids, is rapidly released from the lipid fraction when cells are incubated at low suspension densities in buffer. 3. Of nine amino acids tested, only lysine is significantly incorporated into the lipid fraction. The incorporation is increased by the presence of glycerol, glucose and other amino acids, especially aspartate and glutamate. 4. The incorporation of lysine is increased by the addition of puromycin at concentrations that inhibit protein synthesis. Chloramphenicol does not increase the incorporation of lysine but abolishes the enhancing effect of puromycin. 5. The enhancing effect of puromycin is accompanied by a similar increase in the incorporation of lysine into the fraction soluble in hot trichloroacetic acid. 6. Lysine is incorporated into the lipid fraction that contains O-amino acid esters of phosphatidylglycerol and corresponds in properties to phosphatidylglyceryl-lysine. 7. Lysine is rapidly released from the lipid of cells incubated in buffer only at low suspension densities. 8. Incubation of cells with the phosphatidylglyceryl-lysine fraction does not lead to the appearance of free lysine or to incorporation into the fraction insoluble in hot trichloroacetic acid.  相似文献   

18.
1. The metabolism of [U-14C]glucose by the isolated diaphragm muscle of normal rats, rats rendered diabetic with streptozotocin and rats with transitory insulin deficiency after an injection of anti-insulin serum was studied. 2. The incorporation of [14C]glucose into glycogen and oligosaccharides was significantly decreased in the diabetic diaphragm muscle and in the muscle from rats treated with anti-insulin serum. 3. Neither diabetes nor transitory insulin deficiency influenced the oxidation of glucose, or the formation of lactate and hexose phosphate esters from glucose. 4. Insulin fully restored the incorporation of glucose into glycogen and maltotetraose in the diabetic muscle, but the incorporation into oligosaccharides, although increased in the presence of insulin, was significantly lower than the values obtained with normal diaphragm in the presence of insulin.  相似文献   

19.
The pathways of glycerol-3-phosphate (G3P) generation for glyceride synthesis were examined in precision-cut liver slices of fasted and diabetic rats. The incorporation of 5 mM [U-(14)C]glucose into glyceride-glycerol, used to evaluate G3P generation via glycolysis, was reduced by approximately 26-36% in liver slices of fasted and diabetic rats. The glycolytic flux was reduced by approximately 60% in both groups. The incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol (glyceroneogenesis) increased approximately 50% and approximately 36% in slices of fasted and diabetic rats, respectively, which also showed a two-fold increase in the activity phosphoenolpyruvate carboxykinase. The increased incorporation of 1.0 mM [2-(14)C]pyruvate into glyceride-glycerol by slices of fasted rats was not affected by the addition of 5 mM glucose to the incubation medium. The activity of glycerokinase and the incorporation of 1 mM [U-(14)C]glycerol into glyceride-glycerol, evaluators of G3P formation by direct glycerol phosphorylation, did not differ significantly from controls in slices of the two experimental groups. Rates of incorporation of 1 mM [2-(14)C]pyruvate and [U-(14)C]glycerol into glucose of incubation medium (gluconeogenesis) were approximately 140 and approximately 20% higher in fasted and diabetic slices than in control slices. It could be estimated that glyceroneogenesis by liver slices of fasted rats contributed with approximately 20% of G3P generated for glyceride-glycerol synthesis, the glycolytic pathway with approximately 5%, and direct phosphorylation of glycerol by glycerokinase with approximately 75%. Pyruvate contributed with 54% and glycerol with 46% of gluconeogenesis. The present data indicate that glyceroneogenesis has a significant participation in the generation of G3P needed for the increased glyceride-glycerol synthesis in liver during fasting and diabetes.  相似文献   

20.
CL (cardiolipin) is a key phospholipid involved in ATP generation. Since progression through the cell cycle requires ATP we examined regulation of CL synthesis during S-phase in human cells and investigated whether CL or CL synthesis was required to support nucleotide synthesis in S-phase. HeLa cells were made quiescent by serum depletion for 24 h. Serum addition resulted in substantial stimulation of [methyl-(3)H]thymidine incorporation into cells compared with serum-starved cells by 8 h, confirming entry into the S-phase. CL mass was unaltered at 8 h, but increased 2-fold by 16 h post-serum addition compared with serum-starved cells. The reason for the increase in CL mass upon entry into S-phase was an increase in activity and expression of CL de novo biosynthetic and remodelling enzymes and this paralleled the increase in mitochondrial mass. CL de novo biosynthesis from D-[U-(14)C]glucose was elevated, and from [1,3-(3)H]glycerol reduced, upon serum addition to quiescent cells compared with controls and this was a result of differences in the selection of precursor pools at the level of uptake. Triascin C treatment inhibited CL synthesis from [1-(14)C]oleate but did not affect [methyl-(3)H]thymidine incorporation into HeLa cells upon serum addition to serum-starved cells. Barth Syndrome lymphoblasts, which exhibit reduced CL, showed similar [methyl-(3)H]thymidine incorporation into cells upon serum addition to serum-starved cells compared with cells from normal aged-matched controls. The results indicate that CL de novo biosynthesis is up-regulated via elevated activity and expression of CL biosynthetic genes and this accounted for the doubling of CL seen during S-phase; however, normal de novo CL biosynthesis or CL itself is not essential to support nucleotide synthesis during entry into S-phase of the human cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号