首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Glycerol and glucose utilization for phospholipid biosynthesis was examined in type II pneumocytes isolated from normal and streptozotocin-diabetic rats. In cells from diabetic rats, incorporation of [1,3-14C]glycerol into total phosphatidylcholine (PC), disaturated phosphatidylcholine (DSPC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) occurred to a greater degree by the glycerol 3-phosphate pathway as opposed to the dihydroxyacetone phosphate pathway. Total incorporation of glycerol into each of the major cellular phospholipids was increased up to 6-fold in cells from diabetic rats, while the total incorporation of glucose into the same lipids was decreased 2-fold. While the percentage of both glucose and glycerol carbons incorporated into the backbone of DSPC was increased in cells from diabetic rats, the percentage of carbons from both substrates incorporated into the fatty acid moieties was decreased. As a measure of DSPC synthesis, choline incorporation into DSPC was significantly decreased in type II cells from diabetic animals if the cells were incubated in the presence of glucose, palmitate and choline but not glycerol. Addition of 0.1 or 0.3 mM glycerol to the incubation medium restored choline incorporation to the control value in cells from diabetic rats, but did not affect the rate of choline incorporation into DSPC in cells from normal rats. These results suggest that exogenous glycerol can compensate for reduced glucose metabolism in type II cells of diabetic animals to maintain a constant rate of DSPC synthesis.  相似文献   

2.
To determine whether type II pneumocytes isolated from diabetic animals could serve as a useful model for the study of surfactant phospholipid biosynthesis and its regulation, type II pneumocytes were isolated from adult streptozotocin-diabetic rats and placed in short-term primary culture. On a DNA basis, total cellular disaturated phosphatidylcholine (disaturated PC) and phosphatidylglycerol (PG) were decreased 36 and 66%, respectively, in type II cells from diabetic animals. 7 days of insulin treatment of diabetic rats returned the cellular disaturated PC and PG content to control values and increased the total cellular phosphatidylethanolamine (PE) content by 51%. The rates of glucose and acetate incorporation into disaturated PC per unit DNA were reduced 32 and 38%, respectively, in cells isolated from diabetic rats, while glycerol incorporation was increased by 143%. Insulin treatment of diabetic rats returned the glucose and glycerol incorporation rates to control values and increased acetate incorporation into disaturated PC by 66%. These data suggest that the biosynthesis of surfactant is altered by both diabetes mellitus and in vivo insulin treatment.  相似文献   

3.
To study the effect of diabetes on pulmonary surfactant secretion, type II pneumocytes from adult streptozotocin-induced diabetic rats were placed in short-term culture. As opposed to a linear secretory rate by control type II cells, the secretory rate of type II cells from diabetic animals was biphasic reaching a minimum at 1.5 h. When exogenous surfactant containing radioactive phosphatidylcholine was added to the incubation media for 1.5 h, the cells from diabetic animals incorporated more exogenous phosphatidylcholine into lamellar bodies than control cells. This suggests that in the type II cell from diabetic animals, the rate of reutilization is greater than the rate of secretion until 1.5 h, at which time the rate of secretion becomes greater. The altered secretory pattern was reversed by in vivo insulin treatment 30 min prior to killing but not by the addition of insulin to the incubation media. When challenged by isoproterenol, a beta-adrenergic agonist, the secretory pattern of cells from diabetic animals was biphasic as observed with basal secretion; however, secretion was stimulated 30% as opposed to 100% increase in control cells. These data suggest that basal and stimulated secretion are altered in the cultured type II cell from diabetic animals and restored by in vivo but not in vitro insulin treatment.  相似文献   

4.
Type II cells isolated from the rat lung were maintained in culture for 8 days. The activity of alkaline phosphatase and lectin binding properties were studied. The alkaline phosphatase activity and the number of lamellar bodies were continually decreasing during the studied time period. The profile of lectin binding (Maclura pomifera and Ricinus communis) did not change during the cultivation.  相似文献   

5.
6.
ATP-binding cassette transporter A1 (ABCA1) promotes transfer of cholesterol and phospholipid from cells to lipid-free serum apolipoproteins. ABCA1 mRNA and protein expression in primary cultures of rodent type II cells was sensitive to upregulation with 5 microM 9-cis-retinoic acid (9cRA) and 6.2 microM 22-hydroxycholesterol (22-OH). The increase in ABCA1 protein levels was time dependent and was maximal after 16 h of exposure to 9cRA + 22-OH. Inducible ABCA1 was also found in transformed cell lines of lung origin: WI38/VA13, A549, and NIH-H441 cells. Stimulation of ABCA1 in rat type II cells by 9cRA + 22-OH resulted in a four- or fivefold enhancement of efflux of radioactive phospholipid or cholesterol, respectively, from the pneumocytes to apolipoprotein AI (apo AI), whereas cAMP (0.3 mM) had no effect. ABCA1-mediated lipid efflux to apo AI was independent of the surfactant secretion pathway, inasmuch as upregulation of ABCA1 resulted in a reduction of secretagogue-stimulated surfactant phospholipid release. These studies demonstrate the presence of functional ABCA1 in type II cells from the lung.  相似文献   

7.
8.
Flux through, and maximal activities of, key enzymes of phenylalanine and tyrosine degradation were measured in liver cells prepared from adrenalectomized rats and from streptozotocin-diabetic rats. Adrenalectomy decreased the phenylalanine hydroxylase flux/activity ratio; this was restored by steroid treatment in vivo. Changes in the phosphorylation state of the hydroxylase may mediate these effects; there was no significant change in the maximal activity of the hydroxylase. Tyrosine metabolism was enhanced by adrenalectomy; this was not related to any change in maximal activity of the aminotransferase. Steroid treatment increased the maximal activity of the aminotransferase. Both acute (3 days) and chronic (10 days) diabetes were associated with increased metabolism of phenylalanine; insulin treatment in vivo did not reverse these changes. Although elevated hydroxylase protein concentration was a major factor, changes in the enzyme phosphorylation state may contribute to differences in phenylalanine degradation in the acute and chronic diabetic states. Tyrosine metabolism, increased by diabetes, was partially restored to normal by insulin treatment in vivo. These changes can, to a large extent, be interpreted in terms of changes in the maximal activity of the aminotransferase.  相似文献   

9.
Lung cells have been isolated by enzymatic digestion of guinea pig lungs and mechanical dispersion to obtain a suspension of viable cells (approximately 500 X 10(6) cells). Type II pneumocytes have been purified to approximately 92% by centrifugal elutriation (2000 rpm, 15 ml/min) followed by a plating in plastic dishes coated with guinea pig IgG (500 micrograms/ml). We have investigated the arachidonic acid metabolism through the cyclooxygenase pathway in this freshly isolated type II cells (2 x 10(6) cells/ml). Purified type II pneumocytes produced thromboxane B2 (TxB2) predominantly and to a smaller extent the 6-keto prostaglandin PGF1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) after incubation with 10 microM arachidonic acid. The stimulation of pneumocytes with 2 microM calcium ionophore A23187 released less eicosanoids than were produced when cells were incubated with 10 microM arachidonic acid. There was no additive effect when the cells were treated with both arachidonic acid and the ionophore A23187. Guinea pig type II pneumocytes failed to release significant amounts of TxB2, 6-keto-PGF1 alpha and PGE2 after stimulation with 10 nM leukotriene B4, 10 nM leukotriene D4, 10 nM platelet-activating factor, 5 microM formyl-methionyl-leucyl-phenylalanine, 0.2 microM bradykinin and 10 nM phorbol myristate acetate. Our findings indicate that guinea pig type II pneunomocytes possess the enzymatic machinery necessary to convert arachidonic acid to specific cyclooxygenase products, which may suggest a role for these cells in lung inflammatory processes.  相似文献   

10.
Glycerol 3-phosphate acylation was studied in type II cells isolated from adult rat lung. The process was found to be largely microsomal. In the microsomes phosphatidic acid is the main product of glycerol 3-phosphate acylation. Glycerol-3-phosphate acyltransferase is rate limiting in the phosphatidic acid formation by the microsomes. Type II cell microsomes incorporate palmitoyl and oleoyl residues into phosphatidic acid at an equal rate if palmitoyl-CoA and oleoyl-CoA are added separately. However, if palmitoyl-CoA and oleoyl-CoA are added as an equimolar mixture the unsaturated fatty acyl moiety is incorporated much faster. Under the latter conditions monoenoic species constitute the most abundant products of glycerol 3-phosphate acylation. The microsomes incorporate both palmitoyl and oleoyl residues readily into both the 1- and 2-position of phosphatidic acid, even when palmitoyl-CoA and oleoyl-CoA are added together. Assuming that both phosphatidic acid phosphatase and cholinephosphotransferase do not discriminate against substrates with an unsaturated acyl moiety at the 1-position and a saturated acyl moiety at the 2-position, the last two observations indicate that a considerable percentage of phosphatidylcholine molecules synthesized de novo may have a saturated fatty acid at the 2-position and an unsaturated fatty acid at the 1-position, and that remodeling at the 1-position may be important for the formation of surfactant dipalmitoylphosphatidylcholine. They also indicate that type II cell microsomes are capable of synthesizing the dipalmitoyl species of phosphatidic acid. However, since there is a preference for the acylation of glycerol 3-phosphate with unsaturated fatty acyl residues, the percentage of dipalmitoyl species in the synthesized phosphatidic acid, and thereby the percentage of dipalmitoyl species in the phosphatidylcholine synthesized de novo, will probably depend on the relative availability of the various acyl-CoA species.  相似文献   

11.
Glycerol kinase activity and glycerol utilization by rat granular pneumocytes were determined in order to investigate the rate-limiting step for glycerol incorporation into lung lipids. Granular pneumocytes were isolated in primary culture following trypsinization of rat lungs. Glycerol kinase activity was 8.2 nmol/h per 10(6) cells. Incorporation of [1,3-14C]glycerol into total cell lipids was 0.29 nmol/h per 10(6) cells. In the presence of saturating glycerol concentration, production of 3H2O from [2-3H]glycerol was 13 times greater than incorporation of [14C]glycerol into lipids. Glycerol phosphate dehydrogenase activity in isolated cells was approximately 10 times glycerol kinase activity. In the presence of 5.6 mM glucose, glycerol incorporation into lipids was decreased 79% and detritiation of glycerol was decreased 34%. This effect of glucose was due to a 25% increase in cell glycerol 3-phosphate content, resulting in dilution of the precursor pool and possible inhibition of glycerol phosphorylation. These results indicate that the relatively limited incorporation of glycerol into surfactant phospholipids by lung epithelial cells reflects the relatively high rate of glycerol 3-phosphate oxidation.  相似文献   

12.
Evidence for pre-receptor, receptor and post-receptor glucagon defects was investigated in adipocytes from streptozotocin-diabetic rats. For this purpose male Wistar rats were injected by cardiac puncture with streptozotocin (65 mg/Kg body-weight) or saline solution and sacrificed after 7 and 15 days of drug administration. Increased glucagon levels and increased glucagon degradation in serum together with a decrease in glucagon binding were found in both groups of diabetic rats. The decrease in glucagon binding was related to a decrease in the number of glucagon receptors/cell rather than to a change in receptor affinity. The lipolytic response of glucagon was increased. However, the ability of glucagon to increase basal or theophylline-stimulated cAMP accumulation in the incubation medium of adipocytes from diabetic rats was decreased. Such alterations could represent a counter-regulatory mechanism of the hyperglucagonemia detected in streptozotocin-diabetic rats.  相似文献   

13.
OBJECTIVE: To evaluate the prevalence of reactive type II pneumocytes (RPII) in bronchoalveolar lavage (BAL) fluid samples obtained from patients with various pulmonary disorders. STUDY DESIGN: Consecutive BAL fluid samples were screened for the presence of RPII on May-Grünwald-Giemsa-stained cytocentrifuge preparations. BAL fluid samples with and without RPII were compared with regard to prevalence, associated clinical diagnoses and cytologic findings. RESULTS: RPII were generally large cells with a high nuclear:cytoplasmic ratio and deeply blue-stained, vacuolated cytoplasm. Most RPII occurred in cohesive cell groups, and the vacuoles tended to be confluent. Cytologic findings associated with RPII were foamy alveolar macrophages, activated lymphocytes and plasma cells. RPII were present in 94 (21.7%) of 433 included BAL fluid samples. The highest prevalences were noted in patients with systemic inflammatory response syndrome and alveolar hemorrhage. In addition, RPII tended to occur more frequently in ventilator-associated pneumonia, Pneumocystis carinii pneumonia, extrinsic allergic alveolitis and drug-induced pulmonary disorders. In contrast, RPII were not observed in BAL fluid samples obtained from patients with sarcoidosis. CONCLUSION: RPII were prevalent in about 20% of BAL fluid specimens. They were associated mainly with conditions of acute lung injury and not observed in sarcoidosis.  相似文献   

14.
A monoclonal antibody that identifies a membrane molecule unique in rat lung for type II alveolar epithelial cells was used to isolate these cells from enzymatically dispersed lung cells by fluorescence-activated cell sorting. Although multistep physical separation techniques have permitted the isolation of large quantities of these cells and flow cytometry has been used by others to isolate lamellar body-containing cells, the application of this antibody-directed sorting has distinct advantages. Because the marker molecule is expressed on immature type II cells prior to the development of lamellar bodies, the antibody will also permit their isolation and study.  相似文献   

15.
Substance P, an eleven amino acid neuropeptide, significantly inhibited release of [3H]phosphatidylcholine from pulmonary Type II epithelial cells in vitro. Basal release and release in response to the beta-adrenergic agonist, terbutaline and 12-O-tetradecanoylphorbol 13-acetate (TPA) were significantly decreased in the presence of substance P. Inhibitory effects of substance P were noted following a 1 h exposure of primary cultures of Type II cells in vitro and persisted up to 3 h in the presence of the secretagogues, TPA and terbutaline. The IC50 values for substance P inhibition of [3H]PC release were 10 microM for basal release, 40 microM for TPA-induced release and 50 microM for terbutaline-induced release. The related neuropeptide, physalaemin and the stable active analog of substance P, [pGlu5, MePhe8, MeGly9]substance P [5-11], had no significant inhibitory effects on surfactant release whether in the presence or absence of TPA or terbutaline. These data support the hypothesis that NH2-terminal basic groups of substance P are necessary for inhibition of surfactant secretion from isolated Type II cells and support the concept that an inhibitory system contributes to mediation of surfactant secretion from Type II epithelial cells.  相似文献   

16.
Treatment of isolated rat Type II pneumocytes with Escherichia coli lipopolysaccharide (LPS) induces a number of ultra-structural changes which become evident after 60 min of incubation. By using post-embedding immunolabeling methods and electron microscopy, we have followed the fate of LPS after different times of incubation. After an initial period of accumulation in the pneumocyte microvilli, the LPS molecules enter the cytoplasm, forming discrete patches which are dispersed in some areas. After longer incubation times, LPS localize in condensed chromatin-free areas inside the nuclei. LPS micelles were visualized after freeze-fracture and compared with the LPS-labeled membrane areas, showing that LPS micelles aggregate in particular membrane zones. The sugar-specific staining in microvilli areas, where Maclura pomifera agglutinin (MPA)-gold particles bind, indicates the presence of galactose derivatives in these membrane structures. Pre-treatment of pneumocytes with LPS inhibited the MPA-gold labeling, suggesting a relation between the MPA receptor and a possible LPS receptor. Finally, double immunolabeling experiments indicated an apparent LPS-tubulin association in some particular membrane regions, which could not be observed when LPS and actin were co-localized.  相似文献   

17.
18.
Surfactant-associated protein A (SP-A) is a component of pulmonary surfactant that binds to a specific receptor (SPAR) on the surface of type II alveolar cells of the lung and regulates gene expression and surfactant secretion. Previously we have shown that activation of SPAR by SP-A binding initiates a signal through pathways that involve tyrosine phosphorylation, include IRS-1, and entail activation of phosphatidylinositol 3-kinase (PI3K). In other cell types, cytokines that activate the PI3K signaling pathway promote cell survival. Therefore we investigated whether there was an effect of SP-A on apoptosis as measured by DNA laddering, FACS analysis, TUNEL assay, and annexin V binding. SP-A protected primary cultures of rat type II alveolar cells against the apoptotic effects of etoposide and UV light and also protected the H441 human Clara lung tumor cell line against staurosporine-induced apoptosis. The protective effects of SP-A were abrogated by inhibition of either tyrosine-specific protein kinase activity or PI3K. SP-A/SPAR interaction thus initiates a signaling pathway that regulates apoptosis in type II cells. These findings may be important in understanding the pathogenesis of acute lung injury and pulmonary tumorigenesis and may suggest new therapeutic options.  相似文献   

19.
We previously reported that arachidonic acid stimulates secretion of phosphatidylcholine in cultures of type II pneumocytes and, based on studies with cyclooxygenase and lipoxygenase inhibitors, suggested that this effect was mediated by lipoxygenase products of arachidonic acid metabolism (Gilfillan, A.M. and Rooney, S.A. (1985) Biochim. Biophys. Acta 833, 336-341). We have now examined the effect of leukotrienes on phosphatidylcholine secretion in type II cells as well as the effect of a leukotriene antagonist, FPL55712, on the stimulatory effect of arachidonic acid. Leukotrienes C4, D4 and E4 stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 10(-12)-10(-6) M. Leukotriene E4 was the most stimulatory, followed by D4 and C4. Leukotriene B4 had no effect. Incubation of the cells with 10(-7) M leukotriene E4 for 90 min resulted in a 107% increase in the rate of phosphatidylcholine secretion. Incubation with 10(-6) M leukotrienes D4 and C4 for the same period resulted in 81% and 63% stimulation, respectively. The leukotrienes had no effect on cellular phosphatidylcholine synthesis or on lactate dehydrogenase release. The stimulatory effects of leukotrienes E4 and D4 were abolished by FPL55712. Similarly, the stimulatory effect of 6 X 10(-6) M arachidonic acid on phosphatidylcholine secretion was reduced from 74% to 25% by 10(-5) M FPL55712. Thus, the stimulatory effect of arachidonic acid on surfactant phospholipid secretion in type II cells is mediated at least in part by leukotrienes.  相似文献   

20.
Glucocorticoid receptor in rat type II pneumocytes has been characterized. The Scatchard plot analysis of 3H-dexamethasone binding to type II cells showed a single class of binding sites. The apparent Kd of 3H-dexamethasone binding by a whole cell assay was 9.1 nM and the maximal binding capacity was 78.0 f mol/10(6) cells (0.31 pmol/mg cytosol protein).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号