首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterohemorrhagic Escherichia coli (EHEC) generate F-actin-rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspF(U), a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspF(U) repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspF(U) are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspF(U) fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspF(U). Whereas clustering of a single EspF(U) repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspF(U) derivatives promote actin assembly more efficiently. Moreover, the EspF(U) repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3-mediated signaling pathways.  相似文献   

2.
Many bacterial pathogens reorganize the host actin cytoskeleton during the course of infection, including enterohemorrhagic Escherichia coli (EHEC), which utilizes the effector protein EspF(U) to assemble actin filaments within plasma membrane protrusions called pedestals. EspF(U) activates N-WASP, a host actin nucleation-promoting factor that is normally auto-inhibited and found in a complex with the actin-binding protein WIP. Under native conditions, this N-WASP/WIP complex is activated by the small GTPase Cdc42 in concert with several different SH3 (Src-homology-3) domain-containing proteins. In the current study, we tested whether SH3 domains from the F-BAR (FCH-Bin-Amphiphysin-Rvs) subfamily of membrane-deforming proteins are involved in actin pedestal formation. We found that three F-BAR proteins: CIP4, FBP17, and TOCA1 (transducer of Cdc42-dependent actin assembly), play different roles during actin pedestal biogenesis. Whereas CIP4 and FBP17 inhibited actin pedestal assembly, TOCA1 stimulated this process. TOCA1 was recruited to pedestals by its SH3 domain, which bound directly to proline-rich sequences within EspF(U). Moreover, EspF(U) and TOCA1 activated the N-WASP/WIP complex in an additive fashion in vitro, suggesting that TOCA1 can augment actin assembly within pedestals. These results reveal that EspF(U) acts as a scaffold to recruit multiple actin assembly factors whose functions are normally regulated by Cdc42.  相似文献   

3.
The Tir proteins of enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are each translocated into the host plasma membrane where they promote F-actin pedestals in epithelial cells beneath adherent bacteria, but the two proteins act by different means. The canonical EPEC Tir becomes phosphorylated on tyrosine residue 474 (Y474) to recruit the host adaptor protein Nck, and also stimulates an inefficient, Nck-independent pathway utilizing tyrosine residue 454 (Y454). In contrast, the canonical EHEC Tir lacks Y474 and instead utilizes residues 452-463 to recruit EspF(U), an EHEC-specific effector that stimulates robust Nck-independent actin assembly. EHEC Tir Y458 and EPEC Tir Y454 are both part of an asparagine-proline-tyrosine (NPY) sequence. We report that each of the EHEC Tir NPY residues is required for EspF(U) recruitment and pedestal formation, and each of the EPEC Tir NPY residues is critical for inefficient, Nck-independent pedestal formation. Introduction of EspF(U) into EPEC dramatically enhanced Nck-independent actin assembly by EPEC Tir in a manner dependent on NPY(454). These results suggest that EPEC and EHEC Tir trigger a common Nck-independent actin assembly pathway and are both derived from an ancestral Tir molecule that utilized NPY to stimulate low-level pedestal formation.  相似文献   

4.
The attachment of enteropathogenic Escherichia coli (EPEC) to host cells and the induction of attaching and effacing (A/E) lesions are prominent pathogenic features. EPEC infection also leads to host cell death and damage to the intestinal mucosa, which is partly dependent upon EspF, one of the effectors. In this study, we demonstrate that EspF is a mitochondrial import protein with a functional mitochondrial targeting signal (MTS), because EspF activity for importing into the mitochondria was abrogated by MTS deletion mutants. Substitution of the 16th leucine with glutamic acid (EspF(L16E)) completely abolished EspF activity. Infection of HeLa cells with wild type but not the espF mutant (DeltaespF) decreased mitochondrial membrane potential (DeltaPsi(m)), leading to cell death. The DeltaPsi(m) decrease and cell death were restored in cells infected with DeltaespF/pEspF but not DeltaespF/pEspF(L16E), suggesting that the 16th leucine in the MTS is a critical amino acid for EspF function. To demonstrate the impact of EspF in vivo, we exploited Citrobacter rodentium by infecting C3H/HeJ mice with DeltaespF(CR), DeltaespF(CR)/pEspF(CR), or DeltaespF(CR)/pEspF(L16E)(CR). These results indicate that EspF activity contributes to bacterial pathogenesis, as judged by murine lethality and intestinal histopathology, and promotion of bacterial colonization of the intestinal mucosa.  相似文献   

5.
BACKGROUND: WASp/SCAR proteins activate the Arp2/3 complex to nucleate actin filament assembly and are thought to have important roles in endocytosis. WASp is required for efficient endocytosis of antigen receptors, N-WASp promotes actin polymerization-dependent movement of endomembrane vesicles, and Las17 (a yeast WASp homolog) is required for endocytic internalization. However, it is unknown whether movement of endosomes or other organelles requires activation of the Arp2/3 complex by members of the WASp/SCAR family. RESULTS: Fluorescence video microscopy of yeast cells expressing a GFP-tagged G protein-coupled receptor (Ste2-GFP) as an endocytic marker revealed that endosomes and the lysosome-like vacuole are highly motile. Endosome/vacuole motility required actin polymerization, as indicated by sensitivity to latrunculin A, whereas microtubules were uninvolved. Endosome/vacuole motility did not require actin cables or myosin V (a MYO2 gene product), which moves secretory vesicles and the Golgi apparatus and mediates vacuole segregation. However, endosome motility required Las17, a WASp homolog. In contrast to other processes involving Las17, endosome/vacuole motility required the WCA domain of Las17, which is necessary and sufficient to activate the Arp2/3 complex. CONCLUSIONS: Endosome/vacuole motility in vivo requires actin polymerization stimulated by the WASp homolog Las17. WASp/SCAR family members in mammalian cells may have similar functions. Defects in endosome/lysosome motility may contribute to deficits in lymphocyte or macrophage function observed in human patients lacking WASp or developmental defects in N-WASp-deficient mice.  相似文献   

6.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in children in developing countries. Many EPEC genes involved in virulence are contained within the locus of enterocyte effacement (LEE), a large pathogenicity island. One of the genes at the far righthand end of the LEE encodes EspF, an EPEC secreted protein of unknown function. EspF, like the other Esps, is a substrate for secretion by the type III secretory system. Previous studies found that an espF mutant behaved as wild type in assays of adherence, invasion, actin condensation and tyrosine phosphorylation. As EPEC can kill host cells, we tested esp gene mutants for host cell killing ability. The espF mutant was deficient in host cell killing despite having normal adherence. The addition of purified EspF to tissue culture medium did not cause any damage to host cells, but expression of espF in COS or HeLa cells caused cell death. The mode of cell death in cells transfected with espF appeared to be pure apoptosis. EspF appears to be an effector of host cell death in epithelial cells; its proline-rich structure suggests that it may act by binding to SH3 domains or EVH1 domains of host cell signalling proteins.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) cause a characteristic attaching and effacing (A/E) lesion in intestinal epithelial cells that is associated with the expression and export of specific bacterial proteins via a type III secretion pathway. These effector proteins and components of the type III export apparatus are encoded on a pathogenicity island known as the locus of enterocyte effacement (LEE). In this study, we describe a proline-rich protein, EspF, encoded by the LEE that is secreted by the EPEC type III secretion apparatus. Whereas an espF deletion mutant does not synthesize or secrete EspF, surprisingly it retains the ability to induce host signaling events, perform A/E activities, and invade host epithelial cells. Although these results do not indicate an obvious role for EspF in the formation of A/E lesions nor in the invasion of epithelial cells, they do not preclude a role played by EspF in other aspects of EPEC pathogenesis.  相似文献   

9.
Delivery of effector molecules into LMme(v) macrophages by enteropathogenic Escherichia coli, via its type three secretion system (T3SS), inhibits bacterial uptake by a phosphatidylinositol-3 (PI-3) kinase-dependent pathway. The T3SS system, encoded by the locus of enterocyte effacement (LEE) pathogenicity island, delivers LEE- and non-LEE-encoded effector proteins into host cells. Previous studies discounted essential roles for the LEE-encoded Map, EspF, Tir or Intimin proteins in this process but correlated it with loss of phosphorylation of the PI-3 kinase substrate, Akt (Celli et al., 2001, EMBO J 20: 1245-1258). Given the more recent finding that these bacterial proteins are multifunctional and can act together to subvert host cellular processes, we generated a quadruple deletion mutant (Map, Tir, EspF and Intimin deficient) to unearth any cooperativity in inhibiting uptake. The quadruple mutant was as defective as the T3SS-defective strain at preventing bacterial uptake with further studies revealing a surprising dependence on EspF but not Map, Tir or Intimin. Subversive activities previously associated with EspF are disruption of epithelial barrier function and programmed cell death, with the latter linked to EspF targeting mitochondria. Interestingly, the C-terminal domain possesses a polyproline motif associated with protein-protein interactions. We demonstrate that EspF-mediated inhibition of PI-3 kinase-dependent uptake: (i) is independent of mitochondrial targeting, (ii) requires the N-terminal domain with and (iii) the C-terminal domain is sufficient to disrupt barrier function but not inhibition of bacterial uptake. Moreover, loss of PI-3 kinase-dependent phosphorylation of Akt and gross changes in host phosphotyrosine protein profiles could not be linked to inhibition of the PI-3 kinase-dependent uptake process.  相似文献   

10.
Ishihara D  Dovas A  Park H  Isaac BM  Cox D 《PloS one》2012,7(1):e30033
Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor that is required for macrophages to directionally migrate towards various chemoattractants. The chemotaxis defect of WASp-deficient cells and its activation by Cdc42 in vivo suggest that WASp plays a role in directional sensing, however, its precise role in macrophage chemotaxis is still unclear. Using shRNA-mediated downregulation of WASp in the murine monocyte/macrophage cell line RAW/LR5 (shWASp), we found that WASp was responsible for the initial wave of actin polymerization in response to global stimulation with CSF-1, which in Dictyostelium discoideum amoebae and carcinoma cells has been correlated with the ability to migrate towards chemoattractants. Real-time monitoring of shWASp cells, as well as WASp−/− bone marrow-derived macrophages (BMMs), in response to a CSF-1 gradient revealed that the protrusions from WASp-deficient cells were directional, showing intact directional sensing. However, the protrusions from WASp-deficient cells demonstrated reduced persistence compared to their respective control shRNA and wild-type cells. Further examination showed that tyrosine phosphorylation of WASp was required for both the first wave of actin polymerization following global CSF-1 stimulation and proper directional responses towards CSF-1. Importantly, the PI3K, Rac1 and WAVE2 proteins were incorporated normally in CSF-1 – elicited protrusions in the absence of WASp, suggesting that membrane protrusion driven by the WAVE2 complex signaling is intact. Collectively, these results suggest that WASp and its phosphorylation play critical roles in coordinating the actin cytoskeleton rearrangements necessary for the persistence of protrusions required for directional migration of macrophages towards CSF-1.  相似文献   

11.
Higgs HN  Blanchoin L  Pollard TD 《Biochemistry》1999,38(46):15212-15222
The 70 C-terminal amino acids of Wiskott-Aldrich syndrome protein (WASp WA) activate the actin nucleation activity of the Arp2/3 complex. WASp WA binds both the Arp2/3 complex and actin monomers, but the mechanism by which it activates the Arp2/3 complex is not known. We characterized the effect of WASp WA on actin polymerization in the absence and presence of the human Arp2/3 complex. WASp WA binds actin monomers with an apparent K(d) of 0.4 microM, inhibiting spontaneous nucleation and subunit addition to pointed ends, but not addition to barbed ends. A peptide containing only the WASp homology 2 motif behaves similarly but with a 10-fold lower affinity. In contrast to previously published results, neither WASp WA nor a similar region of the protein Scar1 significantly depolymerizes actin filaments under a variety of conditions. WASp WA and the Arp2/3 complex nucleate actin filaments, and the rate of this nucleation is a function of the concentrations of both WASp WA and the Arp2/3 complex. With excess WASp WA and <10 nM Arp2/3 complex, there is a 1:1 correspondence between the Arp2/3 complex and the concentration of filaments produced, but the filament concentration plateaus at an Arp2/3 complex concentration far below the cellular concentration determined to be 9.7 microM in human neutrophils. Preformed filaments increase the rate of nucleation by WASp WA and the Arp2/3 complex but not the number of filaments that are generated. We propose that filament side binding by the Arp2/3 complex enhances its activation by WASp WA.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) is a major causative agent of infant diarrhoea in developing countries. The EspF effector protein is injected from EPEC into host cells via a type III secretion system and is involved in the disruption of host intestinal barrier function. In addition, EspF is sorted to mitochondria and has a role in initiating the mitochondrial death pathway. To clarify the manner in which EspF affects host cells, we sought to identify eukaryotic EspF-binding proteins using affinity purification. Abcf2, a protein of unknown function and member of the ABC-transporter family, bound EspF in this assay. An interaction between EspF and Abcf2 was confirmed in a yeast two-hybrid system, by colocalization and by co-immunoprecipitation from EPEC-infected cells. Levels of Abcf2 were decreased in cells infected with EPEC in an EspF dose-dependent manner. Knock-down of Abcf2 expression by RNA interference increased EspF-induced caspase 9 and caspase 3 cleavage. In addition, Abcf2-knocked down cells showed increased caspase 3 cleavage upon treatment with the apoptosis inducing agent staurosporine. These results indicate that EspF induces or facilitates host cell death by targeting and interfering with the putative protective function of Abcf2.  相似文献   

13.
Enteropathogenic Escherichia coli (EPEC) is a causative agent of infant diarrhoea in developing countries. The EspF protein is the product of the espF gene found on the locus of enterocyte effacement, the key pathogenicity island carried by EPEC and enterohemorrhagic E. coli. EspF is injected from adherent EPEC into host cells via a type III secretion system and was previously shown to induce apoptotic cell death and to be required for disruption of host intestinal barrier function. In this work, we show by immunofluorescence and fractionation studies that EspF is targeted to host mitochondria. The N-terminal region of EspF serves as a mitochondrial import signal and, when expressed within cells, can target hybrid green fluorescent protein to mitochondria. Assessment of mitochondrial membrane potential in infected epithelial cells indicated that EspF plays a role in the mitochondrial membrane permeabilization induced by EPEC infection. Furthermore, EspF was associated with the release of cytochrome c from mitochondria into the cytoplasm and with caspase-9 and caspase-3 cleavage. These findings indicate a role for EspF in initiating the mitochondrial death pathway.  相似文献   

14.
The human intestinal pathogen, enteropathogenic Escherichia coli (EPEC), causes diarrhoeal disease by a mechanism that is dependent on the injection of effector proteins into the host cell. One effector, EspF, is reported to be required for EPEC to disrupt tight junction integrity of intestinal cells and increase the paracellular movement of molecules, which is likely to contribute to diarrhoea. Here, we show that not one but three EPEC-encoded factors play important roles in this process. Thus, the Map (Mitochondria-associated protein) effector is shown to: (i) be as essential as EspF for disrupting intestinal barrier function, (ii) be able to function independently of EspF, (iii) alter tight junction structure and (iv) mediate these effects in the absence of mitochondrial targeting. Additionally, the outer membrane protein Intimin is shown to be crucial for EspF and Map to disrupt the intestinal barrier function. This function of Intimin is completely independent of its interaction with its known receptor Tir, revealing a physiologically relevant requirement for Intimin interaction with alternative receptor(s). This work demonstrates that EPEC uses multiple multifunctional proteins to elicit specific responses in intestinal cells and that EPEC can control the activity of its injected effector molecules from its extracellular location.  相似文献   

15.
The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin dynamics during cell motility and adhesion, and mutations in its gene are responsible for Wiskott-Aldrich syndrome (WAS). Here, we demonstrate that WASp is ubiquitylated following T-cell antigen receptor (TCR) activation. WASp phosphorylation at tyrosine 291 results in recruitment of the E3 ligase Cbl-b, which, together with c-Cbl, carries out WASp ubiquitylation. Lysine residues 76 and 81, located at the WASp WH1 domain, which contains the vast majority of WASp gene mutations, serve as the ubiquitylation sites. Disruption of WASp ubiquitylation causes WASp accumulation and alters actin dynamics and the formation of actin-dependent structures. Our data suggest that regulated degradation of activated WASp might be an efficient strategy by which the duration and localization of actin rearrangement and the intensity of T-cell activation are controlled.  相似文献   

16.
Dendritic cells (DCs) are professional APCs that reside in peripheral tissues and survey the body for pathogens. Upon activation by inflammatory signals, DCs undergo a maturation process and migrate to lymphoid organs, where they present pathogen-derived Ags to T cells. DC migration depends on tight regulation of the actin cytoskeleton to permit rapid adaptation to environmental cues. We investigated the role of hematopoietic lineage cell-specific protein 1 (HS1), the hematopoietic homolog of cortactin, in regulating the actin cytoskeleton of murine DCs. HS1 localized to lamellipodial protrusions and podosomes, actin-rich structures associated with adhesion and migration. DCs from HS1(-/-) mice showed aberrant lamellipodial dynamics. Moreover, although these cells formed recognizable podosomes, their podosome arrays were loosely packed and improperly localized within the cell. HS1 interacts with Wiskott-Aldrich syndrome protein (WASp), another key actin-regulatory protein, through mutual binding to WASp-interacting protein. Comparative analysis of DCs deficient for HS1, WASp or both proteins revealed unique roles for these proteins in regulating podosomes with WASp being essential for podosome formation and with HS1 ensuring efficient array organization. WASp recruitment to podosome cores was independent of HS1, whereas HS1 recruitment required Src homology 3 domain-dependent interactions with the WASp/WASp-interacting protein heterodimer. In migration assays, the phenotypes of HS1- and WASp-deficient DCs were related, but distinct. WASp(-/y) DCs migrating in a chemokine gradient showed a large decrease in velocity and diminished directional persistence. In contrast, HS1(-/-) DCs migrated faster than wild-type cells, but directional persistence was significantly reduced. These studies show that HS1 functions in concert with WASp to fine-tune DC cytoarchitecture and direct cell migration.  相似文献   

17.
EspF of enteropathogenic Escherichia coli targets mitochondria and subverts a number of cellular functions. EspF consists of six putative Src homology 3 (SH3) domain binding motifs. In this study we identified sorting nexin 9 (SNX9) as a host cell EspF binding partner protein, which binds EspF via its amino-terminal SH3 region. Coimmunoprecipitation and confocal microscopy showed specific EspF-SNX9 interaction and non-mitochondrial protein colocalization in infected epithelial cells.  相似文献   

18.
19.
Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen that perturbs intestinal epithelial function. Many of the alterations in the host cells are mediated by effector molecules that are secreted directly into epithelial cells by the EPEC type III secretion system. The secreted effector molecule EspF plays a key role in redistributing tight junction proteins and altering epithelial barrier function. EspF has also been shown to localize to mitochondria and trigger membrane depolarization and eventual host cell death. The relationship, if any, between EspF-induced host cell death and epithelial barrier disruption is presently not known. Site-directed mutation of leucine 16 (L16E) of EspF impairs both mitochondrial localization and consequent host cell death. Although the mutation lies within a region critical for type III secretion, EspF(L16E) is secreted efficiently from EPEC. Despite its inability to promote cell death, EspF(L16E) was not impaired for tight junction alteration or barrier disruption. Consistent with this, the pan-caspase inhibitor Q-VD-OPH, despite reducing EPEC-induced host cell death, had no effect on infection-mediated barrier function alteration. Thus EPEC alters the epithelial barrier independent of its ability to induce host cell death.  相似文献   

20.
Wiskott-Aldrich Syndrome protein (WASp) is a key regulator of the Arp2/3 complex and the actin cytoskeleton in hematopoietic cells. WASp is capable of forming an auto-inhibited conformation, which can be disrupted by binding of Cdc42 and phosphatidylinositol 4,5-bisphosphate, leading to its activation. Stimulation of the collagen receptor on platelets and crosslinking the B-cell receptor induce tyrosine phosphorylation of WASp. Here we show that the Src family kinase Hck induces phosphorylation of WASp-Tyr(291) independently of Cdc42 and that this causes a shift in the mobility of WASp upon SDS-PAGE. A phospho-mimicking mutant, WASp-Y291E, exhibited an enhanced ability to stimulate actin polymerization in a cell-free system and when microinjected into primary macrophages induced extensive filopodium formation with greater efficiency than wild-type WASp or a Y291F mutant. We propose that phosphorylation of Tyr(291) directly regulates WASp function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号