首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 128-centimeter sediment core of a forest lake in the Moscow Region, for which the recent zooplankton has been well studied, was analysed. The changes in the density and size of organisms in the core points to an important role of fish and interspecific competition in Cladocera and to a minor role of invertebrate predators in the historical development of the plankton. No substantial shifts in the lake trophy seem to have occurred during the last 600 years. A widely used technique of heating the sediment in a 10% KOH solution may account for 5–13-fold losses of planktonic cladocerans' remains.  相似文献   

2.
The spatial (i.e. microhabitat) and temporal (i.e. seasonal) characteristics of diatom assemblages in adjacent High Arctic lakes were studied intensively June–August 2004. These baseline data are used to improve understanding of modern diatom community dynamics, as well to inform paleoenvironmental reconstructions. Diatoms were collected approximately weekly through the melt season from each principal benthic substrate (moss/macrophyte, rock scrapes, littoral sediment), plankton, and sediment traps, and were compared to the uppermost 0.5 cm of a surface core obtained from the deepest part of the lake where sediment cores are routinely collected. Water samples were collected concurrently with diatom samples to investigate species–environment relationships. The lakes share approximately half of their common taxa, the most abundant overall in both lakes being small Cyclotella species. Results of detrended correspondence analysis (DCA) indicate that the largest gradient in species turnover existed between benthic and planktonic communities in both lakes, and that sediment trap and the surface core top samples most closely resemble the planktonic assemblage, with an additional contribution from the lotic environment. Our results indicate clear micro-spatial controls on species assemblages and a degree of disconnection between the benthos and deep lake sediments that manifests as an under-representation of benthic taxa in deep lake surface sediments. These findings are particularly relevant in the context of interpreting the paleoenvironmental record and assessing ecosystem sensitivity to continued climate change.  相似文献   

3.
The bacterial community in a historic lake sediment core of Ardley Island, Antarctica, spanning approximately 1,600 years, was investigated by molecular approaches targeting the 16S rRNA gene fragments. The cell number in each 1 cm layer of the sediment core was deduced through semi-quantification of the 16S rRNA gene copies by quantitative competitive PCR (QC-PCR). It was found that the total bacterial numbers remained relatively stable along the entire 59 cm sediment core. Denaturing Gradient Gel Electrophoresis (DGGE) analysis and sequencing of PCR-amplified 16S rRNA gene fragments were performed to analyze the bacterial diversity over the entire column. Principle coordinates analysis suggested that the bacterial communities along the sediment core could be separated into three groups. There were obvious bacterial community shift among groups of 1–20 cm, 21–46 cm and 46–59 cm. Diversity indices indicated that the bacterial community in the 21–46 cm depth showed the highest species diversity and uniformity. The main bacterial groups in the sediments fell into 4 major lineages of the gram-negative bacteria: the α, γ and δ subdivision of Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides, and some unknown sequences. The gram-positive bacteria Gemmatimonadetes, Firmicutes and Actinobacteria were also detected. The results demonstrated the presence of highly diverse bacterial community population in the Antarctic lake sediment core. And the possible influence of climate and penguin population change on the bacterial community shift along the sediment core was discussed.Shengkang Li and Xiang Xiao contributed equally to this paper  相似文献   

4.
This article presents a fossil diatom-based, semi-quantitative reconstruction of water level fluctuations for Lake Baringo over the past 200 years as a consequence of climatic variations. A 285 cm long sediment core sample was collected using a Rod-Operated Single-drive Stationary Piston corer. Lake level was inferred using indices based on the proportion of planktonic to benthic diatom taxa (P/B ratio). The sediment archive presented distinct zones dominated by planktonic and benthic diatom flora. An initial transgression in the early 19th century was characterised as a shallow water environment dominated by planktonic Aulacoseira spp. This was a response to extreme drought during the late 18th to early 19th century. Mid-19th century was defined by a high lake stand. The late 19th to early 20th centuries experienced low water level following the widely documented aridity at the time. The mid-20th century was marked by a spectacular rise in water level that coincided with remarkably wet years during the early 1960s and late 1970s. The first decade of the 21st century witnessed widespread changes in water level. The proxy records show that lake ramping and drawdown over the years follow approximately 50-year climatic cycles.  相似文献   

5.
Abstract Viable counts and potential activities of different bacteria were determined as a function of depth in the deep profundal sediment of Lake Constance, Germany. The sediment layer at the bottom of the lake had a total depth of about 7 m and was deposited in the time after the last ice age, i.e., over the past 13,000 years. The high clay content of the sediment prevents seepage. Below 25 cm all of the viable heterotrophic bacteria were present as heat-resistant spores. Numbers of viable spores of both aerobic and anaerobic heterotrophic bacteria decreased exponentially with sediment depth and were below the detection limit (5–55 cells ml−1) at 4–6 m, i.e., in about 8,900-year-old sediment. Absence of viable heterotrophic bacteria in deeper sediment layers demonstrated that aseptic sampling conditions were achieved. The decrease of viable spores with depth may be interpreted as time-dependent death of spores resulting in a death rate of about 0.0013–0.0025 year−1. Viable units of specific metabolic groups of bacteria were detected only in the upper sediment layers (0–50 cm). Nitrifying bacteria could not be detected below 30 cm. Methane-oxidizing bacteria were present in the sediment down to >30 cm, but were in a dormant state. Nitrate reduction activity decreased by a factor of 6 within the upper 25 cm of the sediment, but was still detected at 50 cm. Sulfate reduction, on the other hand, could not be detected at depths of 20 cm and below. By contrast, methanogenesis and methanogenic bacteria could be detected down to 50 cm. These observations indicate that bacteria eventually become nonviable in aged sediments. Received: 5 March 1996; Accepted: 12 March 1996  相似文献   

6.
Bos  D. G.  Cumming  B. F.  Smol  J. P. 《Hydrobiologia》1999,392(2):129-141
Cladoceran and anostracan species assemblages were identified from the surface sediments of 33 closed–basin lakes from the southern Interior Plateau of B.C. in order to explore their effectiveness as quantitative indicators of lakewater salinity and ionic composition. These lakes were chosen to maximize the range of lakewater salinity concentrations (freshwater through hypersaline) as well as brine composition (sulphate and carbonate dominated systems). The distribution of the anostracans and cladocerans were strongly correlated with lakewater salinity, ionic composition and lake depth. Based on these strong relationships significant predictive models were developed, using weighted-averaging techniques, to infer lakewater salinity based on the species composition of anostracans and cladocerans in surface sediments. Furthermore, models were developed to infer lake depth that are superior to previously used techniques based on the ratio of planktonic/littoral Cladocera. Given that the species composition of anostracans and cladocerans can be used to infer changes in salinity and lake level, and that their remains can be identified from sedimentary profiles, there is considerable potential in using their assemblages as paleolimnological indicators of past climatic conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We studied organic components in the X106 sediment core (length 130.3 cm, water depth 236 m, 50°53′01″N, 100°21′22″E) from Lake Hovsgol to elucidate the biological production, source of organic components, and paleoenvironmental and paleolimnological changes during the last 27 kyr in northwest Mongolia. Total organic carbon (TOC) contents (0.20–0.70%) in the core of the last glacial period increased dramatically and attained 3.16–5.85% in the postglacial period (Holocene), together with the increase of the contribution of terrestrial organic matter. Biological production (both terrestrial and aquatic production) based on the TOC contents in the Holocene was 14 times higher than that in the last glacial period. The B?lling-Aller?d warm period and Younger Dryas cool period were both observed at depths of 55–50 cm (ca. 15–13 cal kyr BP) and 50–45 cm (ca. 13–11 cal kyr BP), respectively. We propose here a terrestrial/aquatic index (TAI) for organic matter in lake sediments. The TAI values suggest that terrestrial organic matter in the bottom of the core was less than 10%, increased to 48% in the B?lling-Aller?d warm period, decreased abruptly to 20% in the Younger Dryas cool period, and again increased to 30–40% in the Holocene. Normal-C31 alkane (a biomarker of herbaceous land plants) and n-C18 alkanoic acid (marker of plankton) decreased from the last glacial period to the Holocene, whereas n-C23 alkane and n-C22 alkanoic acid (a marker of higher vascular plants) increased from the last glacial period to the Holocene. Scarce herbaceous plant vegetation, such as Artemisia spp. of the lake basin in the last glacial period, changed into an abundance of higher woody plant vegetation (e.g., Pinus spp., Betula spp. and/or Larix spp.) in the Holocene. Stanol/sterol ratios suggest that relatively high oxygen tension of the lake bottom in ca. 27–22 cal kyr BP decreased from this age to the present, though benthic organisms are still abundant.  相似文献   

8.
Diatom analysis of surface sediments and two sediment cores from different sedimentation areas of a small closed lake was undertaken with the aim of acquiring knowledge on the dependence of the distribution of diatom assemblages on lake bathymetry. Lake Juusa was selected for the study because we have for this lake a large data set about the lithological composition of sediments and macrofossil and cladoceran records for the Holocene. A high carbonate content (20–60%) in the sediment sequence indicates high carbonacity and relatively stable pH values during the Holocene. On the basis of comprehensive analysis, abrupt water-level fluctuations and changes in the trophic status were established. Results of this study showed that the fluctuations of the water-level were the leading factor determining the habitats of diatom assemblages in the lake. In the surface sediment samples planktonic species such as Cyclotella spp., Stephanodiscus spp. and Aulacoseira spp. had a depth optimum at 3–4 m and the most abundant periphytic taxa were distributed mostly at depths shallower than 3.5 m. The same regularity was established in sediment cores where a good correlation between planktonic species and lake water depth was found in sediments accumulated at water depths >4 m. Lake Juusa appears to be a proper site for detailed environmental reconstructions over the Holocene, and the results will give us a good opportunity to analyse the history of water-level fluctuations in other small Estonian lakes. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: K. Martens  相似文献   

9.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

10.
Our objective was to assess the potential of Cladocera from mountain lakes for climate reconstruction. We related Cladocera from surface sediments of Alpine lakes (1,502–2,309 m asl) to 29 abiotic environmental variables using statistical methods. The environmental dataset included water chemistry, lake depth, and bi-hourly water-temperature logs, which were used to assess mean monthly water temperatures, dates of freezing and breakup, spring and autumn mixing. We found 14 different Cladocera of the families Bosminidae, Daphniidae, and Chydoridae. Lakes without Cladocera (eight lakes) were cold and/or ultra-oligotrophic, whereas lakes with planktonic and littoral Cladocera (19 lakes) were warmer and/or less oligotrophic. Lakes with only littoral Cladocera (18 lakes) had intermediate water temperatures/trophy. Changes in Cladocera assemblages were related to changes in climate, nutrients, and/or alkalinity. We found a climate threshold at which Bosminidae disappeared in 95% of the lakes. For climate-change research, we propose studying Cladocera along transects that include climatic thresholds. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

11.
The article describes quantitative and structural characteristics of zooplankton of polytypic sites of a water system including a lake, canal, and a water reservoir. It is shown that in the littoral zone of lakes and water reservoirs, the number of species and communities is higher, and biomass, lower. However, in the littoral zone of shallow lake zooplankton in number, took priority due to Rotifera, in the deep part of the water body – Rotifera and Cladocera; in the center of the lake zooplankton dominated by biomass due to Cladocera and Copepoda, in the water reservoir—due to the Copepoda. The dam area of the water reservoir had the highest species richness of zooplankton among all studied sites. The greatest number and biomass of zooplankton within a waterbody are noted in upper part, where a sedimentation zone had formed, and as a whole for the system of the investigated waterbodies, the maximum quantity indices are typical of lake communities. It is revealed that the starkest interannual changes in zooplankton were observed in the shallow lake: the number of species decreased—in the littoral zone at the expense of Rotifera, and in the center, the biomass increased at the expense of Cladocera; in deep-water area of the dam area of the reservoir, conversely, the number of species, as well as the number and biomass of the community, increased due to Copepoda.  相似文献   

12.
A sediment core, 55 cm long, from station F81 in the Gotland Basin of the Baltic Sea was analysed for diatoms and ebridians. Chrysophyte stomatocysts found in the core were also counted but not identified. The aim was to trace environmental changes, e.g. eutrophication and salinity variations. There is evidence that eutrophication has been increasing in the Baltic Sea in recent decades.Brackish-marine plankton diatoms dominate the entire core and reflect the local planktonic taxa rather well. The dominant taxon is the polyhalobous Actinocyclus octonarius. The main biostratigraphical change within the core analysed takes place at a depth of about 22 cm, where the abundance of diatoms, and especially of Chaetoceros spp., Thalassiosira hyberborea var. pelagica and T. baltica start to increase. This may reflect eutrophication which can be estimated to have started c. 200 years ago.  相似文献   

13.
Summary The Middle Eocene lake sediments of the Eckfeld maar are situated on the southwestern margin of the Tertiary High-Eifel volcanic field (Germany) and are well known for excellently preserved fossil remains. During a driling campaign in 1996 six well sections were cored at three different locations. Three cores (E1/96, E2/96 and E3/96) penetrated deposition of the central lake facies, which is dominated by laminated organic-rich pelites within the uppermost 40 m. It is the aim of this paper to present a brief survey over the main types of stratification observed within the organic-rich portions of the Eckfeld lake sediments. Based on the varying distribution of mineral and organic matter three sediment sequences are distinguished representing different phases of lake development. The “minerogenic laminites” represent the purely clastic mineral sedimentation in a lake, which was surrounded during this early phase by a tephra rim barren of vegetation. The gradual overgrowth of the tephra rim by vegetation is reflected by the predominance of land plant detritus in the sediments of the “transtion beds”, though the siliciclastic input is still significant. In contrast, the succeeding sequence of the “biogenic laminites” is characterised by the frequent occurrence of centric diatoms (mainly of the planktonic speciesAulacoseira cf.granulata) and Chlorophyceae (mainlyBotryococcus andTetraedron) documenting the increase in autochthonous organic sedimentation in a meromictic lake.  相似文献   

14.
The sediment of Lake Balaton (Hungary) provides important information about the lake’s history, particularly with regard to eutrophication. In this study, we used fossil pigment analysis and subfossil Cladocera remains preserved in a dated sediment core to identify trophic stages from ~250 bc to present. Dates of the most recent eutrophic events are in good agreement with previously published data. In general, the abundance and diversity of the Cladocera community increased with eutrophication and decreased with oligotrophication. The sediments of Lake Balaton were characterised by Chydoridae remains, of which Alona species were the most abundant. Of these, Alona quadrangularis and Alona affinis accounted for 40 and 20% of the total Cladocera remains, respectively. The trophic state of Lake Balaton varied between mesotrophic and eutrophic regimes. Seven different trophic periods were identified in Lake Balaton on the basis of Sedimentary Pigment Degradation Unit (SPDU) content of the sediment. Eutrophic states were (1) from ~250 to ~30 bc, (3) between ~300 and ~590 ad, (5) between 1834 and 1944 and (7) from the 1960s until present. Mesotrophic states were (2) ~30 bc to ~300 ad, (4) 590–1834, (6) 1944–1960s. Discriminant analysis of the cladoceran data confirmed these historic events, except for the short mesotrophic episode between 1944 and 1960. The first stage of eutrophication of Lake Balaton (~250 to ~30 bc) was characterised by extensive macrophyte vegetation, as indicated by the increasing abundance of vegetation-associated Cladocera species (Eurycercus lamellatus, Sida crystallina, Pleuroxus sp.). Intensification of eutrophication was identified since the 1980s, reflected by a high abundance of Bosmina species. The most significant planktivorous fish of Lake Balaton was the Sabre carp (Pelecus cultratus), and when its number decreased, the abundance of Bosmina species increased. This study shows that Cladocera are responsive to trophic state changes, underlining their importance as a tool for the assessment of lake eutrophication.  相似文献   

15.
The history of Stare Biele paleolake (northeast Poland) has been reconstructed using subfossil Cladocera remains and pollen and spores of aquatic and mire plants from a sediment core. Sediment accumulation began approximately 12,000 years ago during the Older Dryas chronozone. Throughout the entire Late Glacial period, the basin was a small, low-trophic state lake with a developed open-water zone. A well-recorded increase in the trophic state started at the beginning of Holocene. The lake reached its highest trophic level during the early and middle Atlantic chronozone. The first human activity in the lake catchment area occurred at this time, as recorded by fern spores and numerous charcoal grains. Repeated rises in lake water level are documented at the beginning and throughout the early part of the Younger Dryas. Two clear events of decreasing lake water levels are recorded, first during the middle part of the Younger Dryas and second in the Preboreal. Terrestrialization processes first intensified at the end of Atlantic period, which appears to correspond to a decrease in pH. Guest editors: K. Buczkó, J. Korponai, J. Padisák & S. W. Starratt Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water  相似文献   

16.
From a 332-cm long lacustrine core taken at 60 m water depth and 25 surface sediment samples taken at different water depth sites in Nam Co lake (4,718 m a.s.l.) in the middle-south part of the Tibetan Plateau, we identified nine species of ostracods (Crustacea: Ostracoda) belonging to six genera. Using lithological data, auto-ecological information of the recovered taxa and an ostracod-based transfer function for water depth reconstruction, we distinguished three main environmental stages over the past 8,400 years: during Stage I (8,400–6,800 yr BP), the climate changed from warm-humid to cold-humid, and eventually to cold-arid. The water depth of the site was much lower than today and changed from an estimated 50 to 20–30 m. During Stage II (6,800–2,900 yr BP), environmental conditions were again warm-humid, turning into a cold-arid episode. The lake water depth initially stayed much shallower than today, but then gradually deepened to around 50 m. At the earlier period of Stage III (2,900 yr BP–present), the climate became again warm-humid from cold-arid status. There was a cold-dry event between 1,700 and 1,500 yr BP, which intensified afterward while the surface run off weakened. Early in this stage, lake depth decreased slightly, but then it continuously deepened to 60 m. Our results revealed that central Tibet experienced wavily warm toward tendency in early Holocene, a shift from warm-humid to cold-dry conditions in the middle Holocene, and from warm-humid to cold-dry conditions in the late Holocene. They also show that ostracod assemblages are not only indicative of cold-warm conditions, but are also usable to imply the dry–wet status of a lake area by the inferring water depth variations. Finally, this study provides baseline data on (natural) climate change in this mountain region against which to compare global change impacts.  相似文献   

17.
Liukkonen  Mikko  Kairesalo  Timo  Keto  Juha 《Hydrobiologia》1993,(1):415-426
Lake Vesijärvi was loaded by sewage from the City of Lahti for 60 years until 1976 when the discharge was diverted. Paleolimnological analyses of the varved bottom sediment indicate that the sedimentation rate within the Enonselka basin, the most eutrophic part of the lake, has been as high as 2 cm yr–1, and total phosphorus accumulation was 20–40 g P m–2 yr–1, during the last 20 years. Within the less eutrophic Laitialanselkä basin, the sedimentation rate did not exceed 1 cm yr–1, and the formation of varved sediment only began at the end of the 1960's, i.e. about 10 years later than in Enonselkä.Planktonic diatom production was highest in the Enonselka basin. The most abundant diatoms in the sediment between 1970–1985 were Asterionella formosa, Aulacoseira islandica and Stephanodiscus spp. Fragilaria crotonensis and Tabellaria fenestrata had low abundances in the middle of the 1970's but increased again at the end of the 1970's. Asterionella formosa and Diatoma elongatum reached their maxima between 1979–1984 when the hypolimnion of the Enonselk/:a basin was aerated artificially. In the Laitialanselkä basin, the production of planktonic diatoms has been lower and the species composition of the diatom community differed from that in Enonselkä. However, at the end of 1980's the total accumulation of diatoms in Laitialanselkä approached levels which were observed at the end of 1950's in Enonselkä, prior to the rapid eutrophication period.The production and thereby the sedimentation of diatoms has decreased towards the end of the 1980's in Enonselkä, indicating reduced nutrient availability in the lake water. This reduction was due to the decreased external loading of phosphorus as well as to the decreased release of phosphorus from the sediment as a result of improved oxygen balance in the hypolimnion.  相似文献   

18.
Leoni  Barbara  Patelli  Martina  Nava  Veronica  Tolotti  Monica 《Aquatic Ecology》2021,55(2):607-621

In big lakes with strong anthropogenic pressure, it is usually difficult to disentangle the impacts of climate variability from those driven by eutrophication. The present work aimed at the reconstruction of change in the species distribution and density of subfossil Cladocera in Lake Iseo (Italy) in relation to climate and anthropogenic pressure. We related subfossil Cladocera species composition and density in an 80-cm sediment core collected in the pelagic zone of Lake Iseo to long-term temperature trends and phosphorus concentration inferred by diatoms frustules. The Cladocera remains detected in Lake Iseo sediment reflected the species composition and density of modern pelagic Cladocera assemblages. Cladocera rapidly respond to environmental change, and that climate change combined with eutrophication can induce changes in community composition and species density. At the beginning of twentieth century, when global warming was not yet so accentuated, the nutrient increase in water resulted as the principal driver in determining the long-term development of plankton communities and pelagic food web structure. Moreover, catchment-related processes may decisively affect both species composition and density of the lake planktonic communities due to the decrease of lake water transparency induced by input of inorganic material from the catchment area to the lake. The paleolimnological investigation, through the combined study of biotic and abiotic factor, allowed clarifying the synergic effects of the most important drivers of change in lake ecosystems, suggesting that climatic factors should be considered with nutrient availability as determinant element in controlling the temporal development of plankton communities and pelagic food web structure.

  相似文献   

19.
We compared contemporary and pre-Industrial Age (before 1850 AD) fossil assemblages of Cladocera in sediment cores from 25 lakes in the Italian and Swiss Alps to investigate the impact of mounting anthropogenic stresses over the last 150 years on community composition. In addition, we sought relationships between specific species and their environments by measuring nutrients, major ions, pH, alkalinity, conductivity, chlorophyll, and lake and catchment morphological features at the time of core collection for comparison with surface sediment fossil assemblages. The modern (surface sediment) communities of the study lakes consisted mainly of benthic chydorids, primarily Alona affinis, A. quadrangularis, Acroperus harpae, and Chydorus sphaericus-type, with Daphnia as the sole planktonic genus. Principal component analysis (PCA), relating the modern Cladocera assemblages to environmental variables at the time of sampling, indicated that A. affinis and A. quadrangularis are influenced by altitude and dissolved inorganic nitrogen (PCA axis 1) whereas Acroperus harpae and C. sphaericus-type are more influenced by potassium (PCA axis 2). Redundancy analysis, however, identified lake water pH and potassium as the measured variables most impacting modern cladoceran assemblages, and especially the distribution of C. sphaericus-type and A. harpae. Pre-Industrial Age samples contained more Daphnia (longispina-type primarily) than modern samples, and some harbored Eurycercus lamellatus, which has since been extirpated from these lakes. The directional shifts in Cladocera assemblages from the pre-industrial period to the present, illustrated as changes in the sample scores along the PCA axes 1 and 2, were associated with the secondary PCA gradient in almost all lakes, and thus were probably the indirect responses to a cascade of limnological alterations, perhaps initiated by large anthropogenic forcing factors such as atmospheric pollution or fish introductions.  相似文献   

20.
The sediment stratigraphy of a medium-sized mixotrophic lake (Ruila) situated below the highest shoreline of the Baltic Ice Lake in the West-Estonian Lowland is described. The lake is without natural inlets our outlets. The reconstruction of vegetation and land-use history based on pollen data, combined with available archaeological data and detailed 14C dating allows us to give a provisional reconstruction of the temporal and spatial pattern of natural and human induced environmental changes in north-west Estonia during the Holocene. Both radiocarbon dates derived from terrestrial macrofossil dating by accelerator mass spectrometry (AMS) and conventional dating of bulk lake sediment are discussed. The isolation of the lake basin from the Yoldia Sea took place ca. 9700 cal B. C. The Ancylus Lake transgression at ca. 8400 cal B. C. did not reach the basin, but caused a ground water rise, seen in the sediment stratigraphy of the lake. The first signs of human impact on the pollen record appear ca. 5400 cal B. C. (Late Mesolithic). The history of arable farming has been divided into three periods: 1) introduction of crop cultivation and animal husbandry (1500 cal B. C. – A. D. 500); 2) establishment of animal husbandry A. D. 500–1000) and 3) establishment of crop cultivation and intensive cattle breeding (A. D. 1000–today). Due to unfavourable eda-phic conditions the introduction of arable farming was delayed for more than 1000 years compared with elsewhere on the north coast of Esotnia, and intensity of land-use never reached the same proportion as in these areas. Received August 15, 2001 / Accepted August 5, 2002 Correspondence to: Leili Saarse  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号