首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bulked segregant analysis was used to identify RAPD markers in oilseed rape (Brassica napus L.) that were linked to a male fertility restorer gene for Ogura cytoplasmic male sterility. After screening for polymorphisms using 960 primers, 14 RAPD markers were mapped to a 25 cM region including the restorer locus, a mapping population of 242 F2 individuals being employed. The map was used to select 11 markers that were investigated for polymorphisms between the restorer donor line and 46 recipient lines. A set of four RAPD markers, one in coupling phase with the restorer allele and three with the non-restorer allele, which were informative in all 46 combinations, were used in marker assisted selection of plants homozygous for the restorer allele. A total of 906 homozygous restored plants were found among the 4605 BC1F2 plants analysed. Phenotypic data of a subset of the classified plants was compared with the RAPD data and the expected number of recombinants was calculated from the map data. A close correspondence between the expected and observed numbers of plants with a deviating phenotype was found. Thus, use of a set of dominant RAPD markers provides a way obtaining reliable data for marker-assisted selection.  相似文献   

2.
Molecular markers linked to resistance genes are useful to facilitate the introgression of one or more of these genes in breeding materials. Following the approach of bulked segregant analysis, RAPD markers linked to resistance genes against beet necrotic yellow vein virus were identified in the four Beta accessions Holly-1-4, R104, R128 and WB42. Two primers were found which generate RAPD markers tightly linked to resistance in segregating families of Holly-1-4, R104 and R128, indicating that the resistance genes in these accessions might be situated at the same locus. Other, specific, primers were identified which generate RAPD markers linked to resistance in each of these accessions. Short-range maps were established around the resistance locus in these accessions. For WB42, RAPD markers were only identified at a relatively large distance from the resistance gene. Conversion of three RAPD primers of Holly-1-4, R104 and R128 into STS primers resulted in STS markers which can be readily used for marker-assisted selection in breeding programmes. Received: 8 January 1996 / Accepted: 14 June 1996  相似文献   

3.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

4.
 Foliar resistance to Ascochyta lentis is controlled at a single major locus by a dominant gene (AbR 1 ) in the lentil accession ILL5588 (cv ‘Northfield’). Flanking RAPD markers that are closely linked to the resistance locus in coupling phase were identified by bulked segregant analysis. Out of 261 decanucleotide primers screened 7 produced a polymorphic marker that segregated with the resistance locus, and all markers were found to exist within a single linkage group. Five of the seven RAPD markers were within 30 cM of the resistance locus. Log likelihood analysis for detecting QTL associated with the foliar resistance revealed that a single narrow peak accounted for almost 90% of the variance of resistance between the bulks. Preliminary mapping in an F3 population revealed that the closest flanking markers were approximately 6 and 14 centiMorgans (cM) away from the resistance locus. These markers should be useful for the discrimination of resistant germplasm through marker-assisted selection in future breeding programmes and represent the first essential step towards the map-based cloning of this resistance gene. Received: 18 December 1997 / Accepted: 9 June 1998  相似文献   

5.
A population of diploid potato (Solanum tuberosum) was used for the genetic analysis and mapping of a locus for resistance to the potato cyst nematode Globodera rostochiensis, introgressed from the wild potato species Solanum vernei. Resistance tests of 108 genotypes of a F1 population revealed the presence of a single locus with a dominant allele for resistance to G. rostochiensis pathotype Ro1. This locus, designated GroV1, was located on chromosome 5 with RFLP markers. Fine-mapping was performed with RAPD and SCAR markers. The GroV1 locus was found in the same region of the potato genome as the S. tuberosum ssp. andigena H1 nematode resistance locus. Both resistance loci could not excluded to be allelic. The identification of markers flanking the GroV1 locus offers a valuable strategy for marker-assisted selection for introgression of this nematode resistance.Abbreviations BSA bulked segregant analysis - RAPD random-amplified polymorphic DNA - RFLP restriction fragment length polymorphism - SCAR sequence-characterized amplified region  相似文献   

6.
A leaf rust resistance gene Lr19 on the chromosome 7DL of wheat derived from Agropyron elongatum was tagged with random amplified polymorphic DNA (RAPD) and microsatellite markers. The F2 population of 340 plants derived from a cross between the leaf rust resistant near-isogenic line (NIL) of Thatcher (Tc + Lr19) and leaf rust susceptible line Agra Local that segregated for dominant monogenic leaf rust resistance was utilized for generating the mapping population. The molecular markers were mapped in the F2 derived F3 homozygous population of 140 seedlings. Sixteen RAPD markers were identified as linked to the alien gene Lr19 among which eight were in a coupling phase linkage. Twelve RAPD markers co-segregated with Lr19 locus. Nine microsatellite markers located on the long arm of chromosome 7D were also mapped as linked to the gene Lr19, including 7 markers which co-segregated with Lr19 locus, thus generating a saturated region carrying 25 molecular markers linked to the gene Lr19 within 10.2 ± 0.062 cM on either side of the locus. Two RAPD markers S265512 and S253737 which flanked the locus Lr19 were converted to sequence characterized amplified region markers SCS265512 and SCS253736, respectively. The marker SCS265512 was linked with Lr19 in a coupling phase and the marker SCS253736 was linked in a repulsion phase, which when used together mimicked one co-dominant marker capable of distinguishing the heterozygous resistant seedlings from the homozygous resistant. The molecular markers were validated on NILs mostly in Thatcher background isogenic for 44 different Lr genes belonging to both native and alien origin. The validation for polymorphism in common leaf rust susceptible cultivars also confirmed the utility of these tightly linked markers to the gene Lr19 in marker-assisted selection.  相似文献   

7.
Septoria tritici blotch (STB), caused by the ascomycete Mycosphaerella graminicola (anamorph Septoria tritici), was the most destructive disease of wheat in Indiana and adjacent states before deployment of the resistance gene Stb1 during the early 1970s. Since then, Stb1 has provided durable protection against STB in widely grown wheat cultivars. However, its chromosomal location and allelic relationships to most other STB genes are not known, so the molecular mapping of Stb1 is of great interest. Genetic analyses and molecular mapping were performed for two mapping populations. A total of 148 F1 plants (mapping population I) were derived from a three-way cross between the resistant line P881072-75-1 and the susceptible lines P881072-75-2 and Monon, and 106 F6 recombinant-inbred lines (mapping population II) were developed from a cross between the resistant line 72626E2-12-9-1 and the susceptible cultivar Arthur. Bulked-segregant analysis with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and microsatellite or simple-sequence repeat (SSR) markers was conducted to identify those that were putatively linked to the Stb1 gene. Segregation analyses confirmed that a single dominant gene controls the resistance to M. graminicola in each mapping population. Two RAPD markers, G71200 and H19520, were tightly linked to Stb1 in wheat line P881072-75-1 at distances of less than 0.68 cM and 1.4 cM, respectively. In mapping population II, the most closely linked marker was SSR Xbarc74, which was 2.8 cM proximal to Stb1 on chromosome 5BL. Microsatellite loci Xgwm335 and Xgwm213 also were proximal to Stb1 at distances of 7.4 cM and 8.3 cM, respectively. The flanking AFLP marker, EcoRI-AGC/MseI-CTA-1, was 8.4 cM distal to Stb1. The two RAPD markers, G71200 and H19520, and AFLP EcoRI-AGC/MseI-CTA-1, were cloned and sequenced for conversion into sequence-characterized amplified region (SCAR) markers. Only RAPD allele H19520 could be converted successfully, and none of the SCAR markers was diagnostic for the Stb1 locus. Analysis of SSR and the original RAPD primers on several 5BL deletion stocks positioned the Stb1 locus in the region delineated by chromosome breakpoints at fraction lengths 0.59 and 0.75. The molecular markers tightly linked to Stb1 could be useful for marker-assisted selection and for pyramiding of Stb1 with other genes for resistance to M. graminicola in wheat.  相似文献   

8.
Eastern filbert blight (EFB), caused by the pyrenomycete Anisogramma anomala (Peck) E. Müller, is a major disease problem and production constraint in orchards of European hazelnut (Corylus avellana L.) in Oregon’s Willamette Valley. Host genetic resistance is viewed as the most economical means of controlling this disease. A dominant resistance gene from “Gasaway” has been used extensively in the hazelnut breeding program at Oregon State University, but concern about the durability of a single resistance gene stimulated a search for new sources of resistance. “Ratoli,” a minor cultivar from Spain, showed no signs or symptoms of the fungus following a series of inoculations. The objective of this study was to study segregation for disease response in two progenies from crosses of Ratoli with susceptible selections and identify linked DNA markers. About half of the seedlings were resistant, suggesting control by a dominant allele at a single locus. A total of 900 random amplified polymorphic DNA (RAPD) primers and 64 amplified fragment length polymorphism (AFLP) primer combinations were screened. Four RAPD markers and two ALFP markers were identified and a linkage map constructed. On this map, disease resistance was flanked by AFLP marker C4-255 and RAPD marker G17-800 at distances of 0.4 cM and 2.8 cM, respectively. Based on co-segregation with SSR markers, Ratoli resistance was assigned to linkage group 7 while Gasaway resistance is on linkage group 6. Ratoli provides a novel source of EFB resistance, and robust RAPD marker G17-800 is useful for marker-assisted selection.  相似文献   

9.
A novel locus for potato resistance to potato leafroll virus (PLRV) was characterized by inheritance studies and molecular mapping. The diploid parental clone DW 91-1187 was resistant to PLRV accumulation in both inoculated plants and their tuber progeny. The resistance to PLRV accumulation present in DW 91-1187 was not transmitted to any F1 offspring when crossed with a PLRV susceptible clone. Instead, one half of the F1 individuals exhibited undetectable amounts of PLRV as determined by ELISA during the primary infection assay, but accumulated PLRV in their tuber progeny plants. The other half was clearly infected both in the inoculated and tuber-born plants. The inheritance of resistance to PLRV accumulation may be explained by a model of two complementary alleles of a single gene (PLRV.4) or by two complementary genes that are closely linked in repulsion phase. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers linked to the PLRV.4 locus were selected. The two complementary factors were closely linked in coupling phase to the alternative alleles UBC864600 and UBC864800 of DNA marker UBC864. These markers may be used for marker-assisted selection of genotypes having both factors for resistance to PLRV accumulation. The PLRV.4 locus was mapped to a central position on linkage group XI of the potato molecular map, where no resistance locus has been mapped previously.  相似文献   

10.
Anthracnose, caused by Colletotrichum graminicola, infects all aerial parts of sorghum, Sorghum bicolor (L.) Moench, plants and causes loss of as much as 70%. F1 and F2 plants inoculated with local isolates of C. graminicola indicated that resistance to anthracnose in sorghum accession G 73 segregated as a recessive trait in a cross with susceptible cultivar HC 136. To facilitate the use of marker-assisted selection in sorghum breeding programs, a PCR-based specific sequence characterized amplified region (SCAR) marker was developed. A total of 29 resistant and 20 susceptible recombinant inbred lines (RILs) derived from a HC 136 × G 73 cross was used for bulked segregant analysis to identify a RAPD marker closely linked to a gene for resistance to anthracnose. The polymorphism between the parents HC 136 and G 73 was evaluated using 84 random sequence decamer primers. Among these, only 24 primers generated polymorphism. On bulked segregant analysis, primer OPA 12 amplified a unique band of 383 bp only in the resistant parent G 73 and resistant bulk. Segregation analysis of individual RILs showed the marker OPA 12383 was 6.03 cM from the locus governing resistance to anthracnose. The marker OPA 12383 was cloned and sequenced. Based on the sequence of cloned RAPD product, a pair of SCAR markers SCA 12-1 and SCA 12-2 was designed using the MacVector program, which specifically amplified this RAPD fragment in resistant parent G 73, resistant bulk and respective RILs. Therefore, it was confirmed that SCAR marker SCA 12 is at the same locus as RAPD marker OPA 12383 and hence, is linked to the gene for resistance to anthracnose.  相似文献   

11.
Using random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), and morphological traits, the first genetic maps for Cucurbita pepo (2n=2x=40) were constructed and compared. The two mapping populations consisted of 92 F2 individuals each. One map was developed from a cross between an oil-seed pumpkin breeding line and a zucchini accession, into which genes for resistance to Zucchini Yellow Mosaic Virus (ZYMV) from a related species, C. moschata, had been introgressed. The other map was developed from a cross between an oil-seed pumpkin and a crookneck variety. A total of 332 and 323 markers were mapped in the two populations. Markers were distributed in each map over 21 linkage groups and covered an average of 2,200 cM of the C. pepo genome. The two maps had 62 loci in common, which enabled identification of 14 homologous linkage groups. Polyacrylamide gel analyses allowed detection of a high number of markers suitable for mapping, 10% of which were co-dominant RAPD loci. In the Pumpkin-Zucchini population, bulked segregant analysis (BSA) identified seven markers less than 7 cM distant from the locus n, affecting lignification of the seed coat. One of these markers, linked to the recessive hull-less allele (AW11-420), was also found in the Pumpkin-Crookneck population, 4 cM from n. In the Pumpkin-Zucchini population, 24 RAPD markers, previously introduced into C. pepo from C. moschata, were mapped in two linkage groups (13 and 11 markers in LGpz1 and LGpz2, respectively), together with two sequence characterized amplified region (SCAR) markers linked to genes for resistance to ZYMV.  相似文献   

12.
The identification of the gene Pp523, conferring downy mildew resistance to adult plants of broccoli (Brassica oleracea convar. italica), led to the construction of a genetic map that included this resistance locus, 301 amplified fragment length polymorphisms, 55 random amplified polymorphic DNAs, 46 inter-simple sequence repeats, three simple sequence repeats, four other PCR markers and a flower colour locus, all gathered into nine major linkage groups. Nineteen additional molecular markers were clustered into one group of four markers, one group of three markers and six pairs of markers. The map spans over 731.9 cM, corresponding to 89.5% of the 818 cM estimated to be the total genome length. A significant number of the mapped markers, 19.3%, showed distorted segregation. The average distance between mapped adjacent markers is 1.64 cM, which places this map among the densest published to date for this species. Using bulked segregant analysis, we identified a group of molecular markers flanking and closely linked in coupling to the resistance gene and included these in the map. Two markers linked in coupling, OPK17_980 and AT.CTA_133/134, are located at 3.1 cM and 3.6 cM, respectively, at each side from the resistance gene. These markers can be used for marker-assisted selection in breeding programs aiming at the introgression of this gene in susceptible B. oleracea genotypes. The fine mapping of the genomic region surrounding the Pp523 resistance gene is currently being carried out, a basic condition for its isolation via positional cloning.  相似文献   

13.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

14.
White rust, caused by Albugo candida, is a very serious disease in crucifers. In Indian mustard (Brassica juncea), it can cause a yield loss to the extent of 89.9%. The locus Ac2(t) controlling resistance to white rust in BEC-144, an exotic accession of mustard, was mapped using RAPD markers. In the present study, we developed: (1) a more tightly linked marker for the white rust resistance gene, using AFLP in conjunction with bulk segregant analysis, and (2) a PCR-based cleaved amplified polymorphic sequence (CAPS) marker for the closely linked RAPD marker, OPB061000. The data obtained on 94 RILs revealed that the CAPS marker for OPB061000 and the AFLP marker E-ACC/M-CAA350 flank the Ac2(t) gene at 3.8 cM and 6.7 cM, respectively. Validation of the CAPS marker in two different F2 populations of crosses Varuna × BEC-144 and Varuna × BEC-286 was also undertaken, which established its utility in marker-assisted selection (MAS) for white rust resistance. The use of both flanking markers in MAS would allow only 0.25% misclassification and thus provide greater efficiency to selection.Communicated by C. Möllers  相似文献   

15.
 Bulked segregant analysis (BSA) was used to identify seven random amplified polymorphic DNA (RAPD) markers linked to the Rpf 1 gene. Rpf 1 confers resistance to Phytophthora fragariae var. fragariae, the causal agent of red stele root rot in Fragaria spp. The bulked DNAs represented subsets of a F1 population obtained from the cross Md683×Senga Sengana which consisted of 60 plants and segregated in a 1:1 ratio for resistance or susceptibility to race 2.3.4 isolate NS2 of P.  fragariae. Seven markers were shown to be linked to Rpf 1 and were generated from four primers; five of these markers were in coupling phase and two in repulsion phase with respect to the gene. A linkage map of this resistance gene region was generated using JoinMap 2.0TM. The manner in which Rpf 1 and the linked markers co-segregated indicated that they are inherited in a disomic fashion. These markers could enable gene pyramiding and marker-assisted selection of resistance genes in strawberry breeding programmes. Received: 26 August 1996 / Accepted: 20 December 1996  相似文献   

16.
Soil-borne barley yellow mosaic virus disease – caused by a complex of at least three viruses, i.e. Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV) and BaYMV-2 – is one of the most important diseases of winter barley in Europe. The two genes rym4, effective against BaMMV and BaYMV, and rym5, additionally effective against BaYMV-2, comprise a complex locus on chromosome 3HL, which is of special importance to European barley breeding. To provide the genetic basis for positional cloning of the Rym4/Rym5 locus, two high-resolution maps were constructed based on co-dominant flanking markers (MWG838/Y57c10 - MWG010/Bmac29). Mapping at a resolution of about 0.05% rec., rym4 has been located 1.07% recombination distal of marker MWG838 and 1.21% recombination proximal to marker MWG010. Based on a population size of 3,884 F2 plants (0.013% recombination) the interval harbouring rym5 was delimited to 1.49±0.14% recombination. By testing segmental recombinant inbred lines (RILs) for reaction to the different viruses at a resolution of 0.05% rec. (rym4) and 0.019% rec. (rym5), no segregation concerning the reaction to the different viruses could be observed. AFLP-based marker saturation for rym4, using 932 PstI+2/MseI+3 primer combinations only resulted in three markers with the closest one linked at 0.9% recombination to the gene. Two of these markers detected epialleles arising from the differential cytosine methylation of PstI sites. Regarding rym5, profiling of 1,200 RAPD primers (about 18,000 loci) and 2,048 EcoRI+3/MseI+3 AFLP primer combinations (about 205,000 loci) resulted in one RAPD marker and seven AFLP markers tightly linked to the resistance gene. Flanking markers with the closest linkage to rym5 (0.05% and 0.88% recombination) were converted into STS markers. These markers provide a starting point for chromosomal walking and may be exploited in marker-assisted selection for virus resistance based on rym5.  相似文献   

17.
A consensus molecular linkage map of 61.9 cM containing the Or5 gene, which confers resistance to race E of broomrape orobanche cumana, five SCAR markers (three dominant, two codominant) and one RAPD marker were identified based on segregation data scored from two F2 populations of susceptible×resistant sunflower line crosses. Bulked segregant analysis was carried out to generate the five SCAR markers, while the single RAPD marker in the group was identified from 61 segregating RAPD markers that were directly screened on one of the two F2 populations. The five SCAR markers, RTS05, RTS28, RTS40, RTS29 and RTS41, were significantly (LOD≥4.0) linked to the Or5 gene and mapped separately at 5.6, 13.6, 14.1, 21.4 and 39.4 cM from the Or5 locus on one side, while the RAPD marker, UBC120_660, was found at 22.5 cM (LOD=1.4) on the opposite side. These markers should facilitate the efficient transfer of the resistance gene among sunflower breeding lines. As the first report on molecular markers linked to a broomrape resistance gene, the present work provides a starting point to study other genes and to examine the hypothesis of the clustering of broomrape resistance genes in sunflower. Received: 16 September 1998 / Accepted: 22 June 1999  相似文献   

18.
 Two independently assorting dominant genes conditioning resistance to bean anthracnose were identified in an F2 population derived from the highly resistant bean differential cultivar, ‘G 2333’. One gene was allelic to the Co-4 gene in the differential cultivar ‘TO’ and was named Co-4 2 , whereas the second gene was assigned the temporary name Co-7 until a complete characterization with other known resistance genes can be conducted. Two RAPD markers linked to the Co-4 2 allele were identified. One RAPD, OAS13950, co-segregated with no recombinants in two segregating populations of 143 F2 individuals, whereas the second RAPD, OAL9740, mapped at 3.9 cM from the Co-4 2 allele. Two 24-mer SCAR primers (SAS13), developed from the OAS13950 RAPD marker, were dominant and polymorphic, similar to the original RAPD, and supported the tight linkage between the marker(s) and the Co-4 2 allele. The markers were present in germplasm with known resistance alleles at the Co-4 locus. The presence of the markers in two other differential cultivars not previously characterized and in four navy bean cultivars suggests the existence of a gene family for anthracnose resistance at or near the Co-4 locus. Since the Co-7 gene was present only in germplasm which also possessed the Co-4 2 and Co-5 genes, the SAS13 markers were used in combination with standard inoculation techniques to identify F3 lines in which the Co-7 gene was homozygous and the Co-4 2 allele was absent. A similar strategy of marker-assisted dissection is proposed to identify resistant lines in which the Co-5 gene is absent and the Co-7 gene is present by selecting against the OAB3450 marker, which has been shown previously to be linked to the Co-5 gene. These genes cannot be distinguished using traditional screening methods since all current races of the pathogen virulent to the Co-5 gene are avirulent to the Co-4 2 and Co-7 genes. We describe the use of molecular markers tightly linked to resistance genes to facilitate the identification of an uncharacterized resistance gene for which no discriminating race of the pathogen is known. Received: 22 March 1997 / Accepted: 15 July 1997  相似文献   

19.
The R1 allele confers on potato a race-specific resistance to Phytophthora infestans. The corresponding genetic locus maps on chromosome V in a region in which several other resistance genes are also located. As part of a strategy for cloning R1, a high-resolution genetic map was constructed for the segment of chromosome V that is bordered by the RFLP loci GP21 and GP179 and includes the R1 locus. Bulked segregant analysis and markers based on amplified fragment length polymorphisms (AFLP markers) were used to select molecular markers closely linked to R1. Twenty-nine of approximately 3200 informative AFLP loci displayed linkage to the R1 locus. Based on the genotypic analysis of 461 gametes, eight loci mapped within the GP21–GP179 interval. Two of those could not be seperated from R1 by recombination. For genotyping large numbers of plants with respect to the flanking markers GP21 and GP179 PCR based assays were also developed which allowed marker-assisted selection of plants with genotypes Rr and rr and of recombinant plants.  相似文献   

20.
The Pl1 locus in sunflower, Helianthus annuus L., conferring resistance to downy mildew, Plasmopara halstedii, race 1 has been located in linkage group 1 of the consensus RFLP map of the cultivated sunflower. Bulked segregant analyses were used on 135 plants of an F2 progeny from a cross between a downy mildew susceptible line, GH, and RHA266, a line carrying Pl1. Two RFLP markers and one RAPD marker linked to the Pl1 locus have been identified. The RFLP markers are located at 5.6 cM and 7.1 cM on either side of Pl1. The RAPD marker is situated at 43.7 cM from Pl1. The significance and applications of these markers in sunflower breeding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号