首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diacylglycerols are generated in the membrane as the result of extracellular signals and are able to stimulate the activity of protein kinase C, acting as membrane second messengers. Diacylglycerols are recognized by protein kinases C through the C1 domain and established models propose that they will stabilize the translocation of the protein to the membrane. However, diacylglycerols also act by modulating the physical properties of the membrane, thus favouring the translocation of the enzyme. This is done through alteration of the membrane surface curvature, dehydration of the surface and the separation of phospholipid surface groups. Good correlations have been observed between the physical state of the membrane and protein kinase C activity.  相似文献   

2.
The interaction of high density lipoproteins (HDL) with the HDL receptor stimulates the translocation of cholesterol from intracellular pools to the plasma membrane where the cholesterol becomes available for removal by appropriate acceptors. The role of signal transduction through protein kinase C in HDL receptor-dependent cholesterol translocation and efflux was examined using cholesterol-loaded cultured human skin fibroblasts. Treatment of cells with HDL3 activated protein kinase C, demonstrated by a transient increase in membrane associated kinase activity. Kinase activation appeared to be dependent on binding of HDL3 to the HDL receptor, since tetranitromethane-modified HDL3, which does not bind to the receptor, was without effect. Translocation of intracellular sterol to the plasma membrane was stimulated by treatment of cells with the protein kinase C activators, dioctanoylglycerol and phorbol myristic acetate, and the calcium ionophore A23187. Conversely, treatment of cells with sphingosine, a protein kinase C inhibitor, reduced HDL3-mediated translocation and efflux of intracellular sterols. However, sphingosine had no effect on efflux of labeled cholesterol derived from the plasma membrane. Down-regulation of cellular protein kinase C activity by long term incubation with phorbol esters also inhibited HDL3-mediated efflux of intracellular sterols and abolished the ability of sphingosine to further inhibit HDL3-mediated efflux. These studies support the conclusion that HDL receptor-mediated translocation and efflux of intracellular cholesterol occurs through activation of protein kinase C.  相似文献   

3.
Insulin increases membrane protein kinase C activity in rat diaphragm   总被引:5,自引:0,他引:5  
Calcium/phospholipid-dependent protein kinase activity (protein kinase C) was identified in rat diaphragm membrane and cytosol fractions by means of in vitro phosphorylation either of histones or of a specific 87 kDa protein substrate, combined with phosphopeptide-mapping techniques. Both insulin and tumor-promoting phorbol ester treatment of the diaphragm preparations led to increased protein kinase C activity in the membrane fractions. In contrast to the phorbol ester, however, insulin did not induce a concomitant decrease in cytosolic activity, indicating that translocation of the enzyme had not taken place. Thus, insulin appears to increase specifically membrane protein kinase C activity in rat skeletal muscle, possibly through a mechanism not identical to that induced by phorbol esters.  相似文献   

4.
In previous studies we have reported that gastrin exerts a trophic effect on rat colonic epithelial cells in vitro. The effect of gastrin appeared to be mediated through a protein kinase C mechanism. In this study, we have characterized the role of protein kinase C in the gastrin-induced stimulation. Gastrin, in a time- and dose-dependent manner, increased protein kinase C translocation from the cytosol to the membrane, an index of enzyme activation. Maximum translocation occurred in 1 to 2 min following exposure to gastrin (10−8 M), before declining back to baseline level within 5 min. Gastrin did not change total protein kinase C activity in the colonic cells. Staurosporine, an inhibitor of protein kinase C, totally abolished the basal as well as the gastrin-stimulated activity of protein kinase C. The tumor promoter phorbol 12-myristate 13-acetate also stimulated colonic epithelial protein kinase C. However, prolonged treatment of cells with phorbol inhibited their subsequent response to gastrin stimulation. The response to gastrin was also prevented by the gastrin receptor antagonist proglumide. These observations suggest that protein kinase C mediates the stimulatory effect of gastrin on colonic epithelial cells, possibly through a receptor mechanism.  相似文献   

5.
Exposure of rat glioma C6 cells to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) caused an activation of protein kinase C wherein the enzyme rapidly became membrane-bound (T 1/2 of 15 min). This translocation of protein kinase C from cytosol to membrane was followed by a sequestration of cell surface beta-adrenergic receptors and a loss of isoproterenol-stimulated adenylate cyclase activity. We had reported previously that prior exposure of rat glioma cells to concanavalin A prevents the TPA-mediated sequestration of receptors and desensitization of adenylate cyclase (Kassis et al., 1985). We now show that the concanavalin A treatment also prevents the translocation and activation of protein kinase C. These results are further evidence that in the TPA-treated cells, sequestration of beta-adrenergic receptors is mediated by membrane-bound protein kinase C.  相似文献   

6.
Vasopressin, angiotensin II, epinephrine (alpha 1-adrenergic action) and phorbol 12-myristate 13-acetate (PMA) induce increases in membrane-associated protein kinase C activity concomitant with decreases in the cytosolic activity. The data indicate that the calcium-mobilizing hormones and the active phorbol ester induce translocation from the cytosol to the plasma membrane of this protein kinase. The protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, blocked the translocation to the membrane of this protein kinase induced by PMA and vasopressin.  相似文献   

7.
Activation of the neutrophil respiratory burst is thought to involve a translocation and activation of protein kinase C. We report that the presence of Ca2+ during the disruption of unstimulated human neutrophils and cytoplasts resulted in an increase in protein kinase C activity (histone phosphorylation) and immunoreactive protein kinase C species in the particulate (membrane) fraction and a reduction in such activities in the cytosol. This Ca2+-induced translocation of activity was concentration-dependent and occurred at physiologically relevant concentrations of Ca2+ (30-500 nM). The Ca2+-induced membrane association of protein kinase C could be reversed by removal of Ca2+. These findings indicate that the Ca2+ concentration of the extraction buffer can determine the subcellular distribution of protein kinase C in disrupted cells and suggest that the observed location of this enzyme activity in cell fractions may not necessarily reflect the localization in intact cells. These results also raise the possibility that the distribution of protein kinase C between cytosol and membrane is a dynamic equilibrium controlled by levels of free Ca2+. Thus, Ca2+ might regulate distribution as well as activation of protein kinase C.  相似文献   

8.
We have examined protein kinase C activity and hormone secretion in aldosteronoma cells derived from adrenocortical glomerulosa cells and in adjacent adrenal cells containing adrenocortical fasciculata-reticularis cells. When aldosteronoma cells were stimulated with ACTH or angiotensin II, protein kinase C activity gradually decreased in cytosol whereas it increased in membrane. Coincident with the changes of protein kinase C activity, there was enhancement of secretion of aldosterone. On the other hand, incubation of adjacent adrenal fasciculata-reticularis cells with ACTH induced cortisol secretion and an increase in cytosolic protein kinase C activity, accompanied by a decrease in the enzyme activity in membrane. Upon stimulation with angiotensin II, adjacent adrenal fasciculata-reticularis cells did not secrete cortisol and no significant changes of protein kinase C activities were observed in either cytosolic or membrane fractions. These results indicate that both ACTH and angiotensin II stimulate aldosterone secretion and cause translocation of protein kinase C from cytosol to membranes in aldosteronoma cells, whereas, in fasciculata-reticularis cells, only ACTH stimulates cortisol secretion and this is associated with translocation of protein kinase C in the opposite direction, viz., from membrane to cytosol.  相似文献   

9.
The mechanisms involved in the translocation of exogenously added genetic information through the cellular cytoplasm and into the nucleus are essentially unknown. Several trans-cytoplasmic translocation systems operate within cells to transport information received by the plasma membrane into the nucleus. Protein kinase C may be functionally involved in many of these translocation mechanisms. In order to explore the involvement of protein kinase C activation in the cytoplasmic translocation of DNA, NIH3T3 fibroblasts were transfected using the calcium-phosphate co-precipitation method with a plasmid containing the lacZ gene and treated with tetradecanoylphorbol 12,13-acetate (TPA) or 1,2-dioctanoylglycerol (DiC8). Addition of TPA or DiC8 immediately after glycerol shock resulted in a 5-7-fold increase in the number of cells expressing beta-galactosidase as well as a concomitant increase in the total amount of beta-galactosidase activity in the population during periods of transient and stable expression. TPA added at later times resulted in lesser increases in the efficiency of transfection. In contrast, TPA added at the time of addition of the calcium-phosphate precipitate inhibited transfection. In support of a role for protein kinase C activation in enhancing DNA transfection, the TPA analog 4 alpha-phorbol 12,13-didecanoate, which does not activate protein kinase C, was ineffective at enhancing transfection. Furthermore, treatment of cells with the protein kinase C inhibitor sphingosine blocked the TPA-mediated increase in transient and stable expression. The results suggest that protein kinase C activation enhances transfection of exogenous DNA through an as yet unknown mechanism.  相似文献   

10.
The activation of protein kinase C was investigated in digitonin-permeabilized human neuroblastoma SH-SY5Y cells by measuring the phosphorylation of the specific protein kinase C substrate myelin basic protein4-14. The phosphorylation was inhibited by the protein kinase C inhibitory peptide PKC19-36 and was associated to a translocation of the enzyme to the membrane fractions of the SH-SY5Y cells. 1,2-Dioctanoyl-sn-glycerol had no effect on protein kinase C activity unless the calcium concentration was raised to concentrations found in stimulated cells (above 100 nM). Calcium in the absence of other activators did not stimulate protein kinase C. Phorbol 12-myristate 13-acetate was not dependent on calcium for the activation or the translocation of protein kinase C. The induced activation was sustained for 10 min, and thereafter only a small net phosphorylation of the substrate could be detected. Calcium or dioctanoylglycerol, when applied alone, only caused a minor translocation, whereas in combination a marked translocation was observed. Arachidonic acid (10 microM) enhanced protein kinase C activity in the presence of submaximal concentrations of calcium and dioctanoylglycerol. Quinacrine and p-bromophenacyl bromide did not inhibit calcium- and dioctanoylglycerol-induced protein kinase C activity at concentrations which are considered to be sufficient for phospholipase A2 inhibition.  相似文献   

11.
Diacylglycerols, such as 1,2-diolein, and tumor-promoting phorbol compounds, such as TPA (12-0-tetradecanoyl phorbol-13-acetate), stimulate the Ca2+/phospholipid-dependent protein kinase C from T51B rat liver cells, probably by sensitizing it to activation by Ca2+, and they reduce the liver cells' content of EDTA-extractable (i.e., soluble) protein kinase C activity. Evidence is presented that indicates that the glucocorticoid, dexamethasone, and the tumor-promoting artificial sweetener, saccharin, also trigger a Ca2+-dependent increase in the activity of the protein kinase C from T51B liver cells and reduce the cells' content of EDTA-extractable protein kinase C activity. However, these novel stimulators do not activate the enzyme by binding to the same site as diacylglycerols and TPA, although they do alter this site as indicated by an increase in the binding of the TPA analogue PDBu (phorbol 12,13-dibutyrate).  相似文献   

12.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

13.
The concanavalin A (Con A)-induced proliferation of lymph node lymphocytes is dependent on the presence of macrophages. When lymphocytes are depleted of macrophages, Con A is no longer mitogenic. Either 12-0-tetradecanoylphorbol-13-acetate (TPA), interleukin 1 (IL1), or macrophages in combination with Con A can restore proliferation. To establish where the proliferation process is blocked in the absence of macrophages, an early step in the signalling pathway, the activation of protein kinase C, was examined. It was found that although Con A caused translocation of protein kinase C from the cytosol to the membrane of lymph node cells, when the lymph node cells were depleted of macrophages and exposed to Con A, this translocation of protein kinase C did not occur. Instead, protein kinase C activity decreased in the membrane fraction and increased in the cytosol. On the other hand, TPA caused translocation of protein kinase C (PKC) from the cytosol to the membrane regardless of the presence of macrophages. However, the macrophage product, IL1, alone or in combination with Con A did not cause translocation of protein kinase C. In a reconstitution experiment, in which lymph node cells were depleted of macrophages and then macrophages were added back, the addition of Con A again lead to translocation of protein kinase C from the cytosol to the membrane. This combination also restored cell proliferation. Therefore, the Con A induced PKC translocation in T lymphocytes is macrophage mediated. TPA overcomes the macrophage requirement by directly activating PKC, while IL1 appears to act at a different step in proliferation.  相似文献   

14.
Prolactin stimulates a hepatotrophic response similar to that caused by phorbol esters or partial hepatectomy in rats. Since phorbol esters, which activate protein kinase C, mimic prolactin action in liver, the relationship between prolactin administration and subsequent hepatic protein kinase C translocation was assessed. Prolactin administration rapidly stimulated a 4-fold elevation of membrane protein kinase C activity. The effect of prolactin on hepatic protein kinase C was specific for lactogenic hormones but could be duplicated by phorbol esters. Further, an increase in serum prolactin was demonstrated subsequent to partial hepatectomy and preceding hepatic protein kinase C translocation. Therefore, translocation of hepatic protein kinase C appears important for hepatic proliferation in response to prolactin administration and to partial hepatectomy.  相似文献   

15.
The ability of tumor promoting 12-O-tetradecanoylphorbol-13-acetate (TPA) to redistribute protein kinase C in human promyelocytic leukemic HL60 cells was investigated. It was found that TPA caused a rapid translocation (within 10 min) of protein kinase C from the cytosolic (soluble) fraction to the particulate (membrane) fraction, as determined indirectly by assaying for the enzyme activity or by immunoblotting of the enzyme protein in the isolated subcellular fractions. Immunocytochemical localization of the enzyme demonstrated directly that the TPA caused an enzyme translocation t the plasma membrane. These findings suggest that translocation to the plasma membrane of the enzyme may represent initial events related to the TPA effect on terminal differentiation of HL60 cells to monocytes/macrophages.  相似文献   

16.
An elevation in diacylglycerol content in the myocardium from diabetic rats has been reported. Since diacylglycerol is known to be an important second messenger in activating protein kinase C, we carried out a study to investigate the status of protein kinase C activity in the hearts of Wistar diabetic rats. Our results showed that protein kinase C activity was significantly increased in the membrane fraction of diabetic hearts compared with controls, and the increased activity was accompanied by a decrease in cytosolic protein kinase C activity in these diabetic hearts. The increase in the membrane-bound protein kinase C activity thus appears to be due to translocation of the enzyme from the cytosolic to the membrane fraction. These results indicate that the development of diabetic cardiomyopathy is accompanied with a high membrane-bound protein kinase C level.  相似文献   

17.
We have studied, in streptolysin O-permeabilized HL-60 cells and in HL-60 membrane preparations, the effects of phorbol 12-myristate 13-acetate (PMA) on polyphosphoinositide-specific phospholipase C (PLC) activity and on terminal differentiation towards macrophagic-like cells. We showed that terminal differentiation was induced when differentiating concentrations of the drug were present for only 1-2 h in the culture medium. Conditions inducing differentiation also inhibited PLC activity for a long lasting period (at least 5 h). When terminal differentiation affected only part of the cell population, inhibition of phospholipase C activity was found to be less marked and reversible over the period studied. Moreover in experiments done in an HL-60 clone resistant to PMA, no inhibition of PLC activity was provoked by this tumour promotor. In order to study the involvement of protein kinase C in this process, we measured modifications of PLC activity by PMA in the presence of two different protein kinase C inhibitors, staurosporine and H-7. They both prevented the inhibition of PLC activity by PMA indicating that this inhibition is likely to be related to the effect of PMA on protein kinase C activity. This was also confirmed by the fact that active protein kinase C, by itself, was able to decrease PLC activity when added to membrane preparations or to streptolysin O-permeabilized control HL-60 cells. These results indicate that PMA acts in inhibiting phospholipase C activity through its effect on protein kinase C activation and/or on protein kinase C translocation to the plasma membrane and that terminal differentiation, might be related to changes in both protein kinase C and PLC activities.  相似文献   

18.
Insulin treatment stimulated the activity of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) in both cytosolic and membrane fractions of BC3H-1 myocytes. Within 60 s of insulin treatment, membrane protein kinase C activity increased 2-fold, diminished toward control levels transiently, and then increased 2-fold again after 15 min. Cytosolic protein kinase C activity increased more gradually and steadily up to 80% over a 20-min period. Increases in protein kinase C activity were dose-dependent and were not simply a result of translocation of cytosolic enzyme (although this may have occurred), as total activity was also increased. The increase in protein kinase C activity was not inhibited by cycloheximide (which also increased protein kinase C activity and 2-deoxyglucose transport) and was still evident following anion exchange chromatography. The insulin effect was decidedly different from those of 12-O-tetradecanoylphorbol-13-acetate and phenylephrine using histone III-S as substrate. Phenylephrine decreased cytosolic protein kinase C activity while increasing membrane activity; 12-O-tetradecanoylphorbol-13-acetate only decreased cytosolic protein kinase C activity. The early insulin-induced increases in membrane protein kinase C activity may be related to increased diacylglycerol generation from de novo phosphatidic acid synthesis, as there were rapid increases in [3H]glycerol incorporation into diacylglycerol, and transient increases in phospholipid hydrolysis, as there were transient rapid increases in [3H]diacylglycerol in cells prelabeled with [3H]arachidonate. Later, sustained increases in membrane and cytosolic protein kinase C activity may reflect the continuous activation of de novo phospholipid synthesis, as there were associated increases in [3H]glycerol incorporation into diacylglycerol at later, as well as very early time points.  相似文献   

19.
CTL are activated to lyse their targets through the interaction of the CTL-R and the appropriate Ag on the surface of the target cell. Experiments with tumor-promoting phorbol esters have suggested that the activation and translocation of protein kinase C (PKC) to the CTL membrane may be important in the activation process. We have studied the functional role of PKC in lytic signal transduction by correlating the phosphorylation of a set of CTL membrane proteins bound by the lectin Con A with lytic function in CTL clones. The data obtained indicate that the phosphorylation of a 15- to 17-kDa polypeptide in this subset is associated with the translocation of PKC to the membrane and the stimulation of lytic function. This suggests that the 15- to 17-kDa protein may be a physiologically relevant substrate for PKC translocated to the membrane as a result of Ag-specific perturbation of the CTL-R.  相似文献   

20.
Diacylglycerols (DAGs) derived from phosphatidylcholine (PC) hydrolysis have been shown to activate protein kinase C (PKC) in vitro, but it is not known whether this event occurs in response to DAGs generated via agonist-induced PC hydrolysis in intact cells. In this report we have addressed this question directly, using alpha-thrombin stimulation of IIC9 fibroblasts. PKC activation in intact cells was assessed in two ways, by measuring: 1) PKC membrane association as determined by kinase activity and Western blot analysis and 2) the phosphorylation of an endogenous PKC substrate, an 80-kDa protein. Treatment with 500 ng/ml alpha-thrombin has been shown to stimulate both phosphoinositide and PC hydrolysis, whereas treatment with 100 pg/ml alpha-thrombin stimulates only PC breakdown. Using these two conditions, we show that DAG produced from phosphoinositide, but not PC hydrolysis, is associated with the activation of PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号