首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to the constitutive, low-affinity phosphate-transport system described previously, Neurospora possesses a second, high-affinity system which is derepressed during phosphorus starvation. At pH 5.8, System II has a of about 3μM and a Jmax of 5.2 mmol/l cell water per min.System II reaches maximal activity after about 2 h of growth in phosphorus-free minimal medium. Its formation is blocked by cycloheximide and, once made, it appears to turn over rapidly. Addition of cycloheximide to fully derepressed cultures results in the decay of System II with a of 14 min, very similar to the turnover rate previously reported (Wiley, W.R. and Matchett, W.H. (1968) J. Bacteriol. 95, 959–966) for tryptophan transport in Neurospora. Thus, these transport systems appear to be regulated by a balance between synthesis and breakdoown, as affected by intracellular pools of substrate or related compounds.  相似文献   

2.
3.
4.
5.
The expression of high-affinity glucose uptake in Saccharomyces cerevisiae strains carrying conditional mutations conferring a block of secretion and cell surface growth (sec) revealed a requirement for a functional secretory pathway for derepression of carrier activity. Thus, in strains carrying the sec1-1, sec4-2, sec7-1, sec14-3, or sec17-1 mutation, no high-affinity carrier activity was expressed after a shift to derepressing glucose concentrations at the nonpermissive temperature. In the case of sec18-1, however, derepression of carrier activity did occur at both the permissive and nonpermissive temperature, but not to the same extent as found in the wild-type strain, suggesting that SEC18 function may not be essential for expression of carrier activity. In sec1-1, accumulation of high-affinity carrier activity (or a component thereof) in presecretory vesicles during incubation at the nonpermissive temperature was demonstrated. The presence of a high glucose concentration in the medium did not affect transfer of that accumulated carrier function to the cell surface. Carrier function did not accumulate in strains carrying the other sec mutations. Analysis of the stability of high-affinity carrier activity at 37 degrees C demonstrated rapid and unexpected loss of carrier activity not affected by the presence of glucose in the medium. Thus, blockage of cell surface growth seems to affect turnover rates of hexose carrier activities.  相似文献   

6.
7.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

8.
Analysis of a clinical isolate of Acinetobacter baumannii showed that this bacterium was able to grow under iron-limiting conditions, using chemically defined growth media containing different iron chelators such as human transferrin, ethylenediaminedi-(o-hydroxyphenyl)acetic acid, nitrilotriacetic acid, and 2,2'-bipyridyl. This iron uptake-proficient phenotype was due to the synthesis and secretion of a catechol-type siderophore compound. Utilization bioassays using the Salmonella typhimurium iron uptake mutants enb-1 and enb-7 proved that this siderophore is different from enterobactin. This catechol siderophore was partially purified from culture supernatants by adsorption chromatography using an XAD-7 resin. The purified component exhibited a chromatographic behavior and a UV-visible light absorption spectrum different from those of 2,3-dihydroxybenzoic acid and other bacterial catechol siderophores. Furthermore, the siderophore activity of this extracellular catechol was confirmed by its ability to stimulate energy-dependent uptake of 55Fe(III) as well as to promote the growth of A. baumannii bacterial cells under iron-deficient conditions imposed by 60 microM human transferrin. Polyacrylamide gel electrophoresis analysis showed the presence of iron-regulated proteins in both inner and outer membranes of this clinical isolate of A. baumannii. Some of these membrane proteins may be involved in the recognition and internalization of the iron-siderophore complexes.  相似文献   

9.
Staphylococcus aureus accumulates proline and glycine betaine when cells are grown at low water activity. In the present study, we have identified a high-affinity glycine betaine transport system in this bacterium. Optimal activity for this transport system was measured in the presence of high NaCl concentrations, but transport activity was not stimulated by high concentrations of other solutes.  相似文献   

10.
Summary Uptake of 14C-sorbose and 14C-3-O-methylglucose by ungerminated conidia of Neurospora crassa was measured by means of the millipore filter technique.Initial rates of uptake of both sorbose and 3-O-methylglucose exemplify a marked dependence on pH of the incubation medium in the range between pH 3.5 and 6.5. The optimal pH for uptake of both sugars is close to 4.75.When ungerminated conidia are starved with buffer for prolonged periods of time prior to assaying their transport capacity, in contrast to findings for germinated conidia and mycelia no de-repression of the glucose-repressible sugar transport system is effectuated.  相似文献   

11.
Expression plasmids containing various portions of araFGH operon sequences were assayed for their ability to facilitate the high-affinity L-arabinose transport process in a strain lacking the chromosomal copy of this operon. Accumulation studies demonstrated that the specific induction of all three operon coding sequences was necessary to restore high-affinity L-arabinose transport. Kinetic analysis of this genetically reconstituted transport system indicated that it functions with essentially wild-type parameters. Therefore, L-arabinose-binding protein-mediated transport appears to require only two inducible membrane-associated components (araG and araH) in addition to the binding protein (araF).  相似文献   

12.
Nitrate transport system in Neurospora crassa   总被引:8,自引:4,他引:8       下载免费PDF全文
Nitrate uptake in Neurospora crassa has been investigated under various conditions of nitrogen nutrition by measuring the rate of disappearance of nitrate from the medium and by determining mycelial nitrate accumulation. The nitrate transport system is induced by either nitrate or nitrite, but is not present in mycelia grown on ammonia or Casamino Acids. The appearance of nitrate uptake activity is prevented by cycloheximide, puromycin, or 6-methyl purine. The induced nitrate transport system displays a Km for nitrate of 0.25 mM. Nitrate uptake is inhibited by metabolic poisons such as 2,4-dinitrophenol, cyanide, and antimycin A. Furthermore, mycelia can concentrate nitrate 50-fold. Ammonia and nitrite are non-competitive inhibitors with respect to nitrate, with Ki values of 0.13 and 0.17 mM, respectively. Ammonia does not repress the formation of the nitrate transport system. In contrast, the nitrate uptake system is repressed by Casamino Acids. All amino acids individually prevent nitrate accumulation, with the exception of methionine, glutamine, and alanine. The influence of nitrate reduction and the nitrate reductase protein on nitrate transport was investigated in wild-type Neurospora lacking a functional nitrate reductase and in nitrate non-utilizing mutants, nit-1, nit-2, and nit-3. These mycelia contain an inducible nitrate transport system which displays the same characteristics as those found in the wild-type mycelia having the functional nitrate reductase. These findings suggest that nitrate transport is not dependent upon nitrate reduction and that these two processes are separate events in the assimilation of nitrate.  相似文献   

13.
14.
15.
16.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

17.
18.
Neurospora crassa conidia possess an active transport system for the uptake of acetate. This system was characterized as: (a) energy dependent; (b) taking place against a concentration gradient; (c) saturating at higher substrate concentrations and (d) competitively inhibited by propionate. Activity of the acetate transport system can be further enhanced by preincubating conidia in 1 mM acetate medium for 180 min (the inducible transport system). The conidial system and the inducible system have similar properties. The development of the inducible transport was dependent on RNA and protein synthesis. A genetic control of this system was further confirmed by isolating a mutant acp-i acetate permease, inducible) that fails to develop the inducible transport system.  相似文献   

19.
Pi uptake in cells or spheroplasts ofParacoccus denitrificans is biphasic; only the first rapid phase represents net Pi transport. The second phase is limited by the rate of Pi utilization inside the cell, i.e., mainly by its esterification, and as such it was inhibited by DCCD. The Pi/dicarboxylate antiporter does not seem to be operative, and its inhibitorn-butylmalonate did not exert specific inhibition. Pi transport is inhibited by SH reagents; the most potent inhibitor is PCMB, and mersalyl is much less effective. However, neither inhibitor affects efflux of accumulated Pi. The gradient of potassium ions may be involved in the Pi uptake, which is lowered in the presence of valinomycin. FCCP alone does not release accumulated Pi from spheroplasts unless they are preincubated with SCN?. The results indicate that Pi enters the cell by symport with protons.  相似文献   

20.
Phosphate starvation regulon of Salmonella typhimurium.   总被引:7,自引:4,他引:7       下载免费PDF全文
Several phosphate-starvation-inducible (psi) genetic loci in Salmonella typhimurium were identified by fusing the lacZ gene to psi promoters by using the Mu d1 and Mu d1-8 bacteriophages. Although several different starvation conditions were examined, the psi loci responded solely to phosphate deprivation. A regulatory locus, psiR, was identified as controlling the psiC locus. The psiR locus did not affect the expression of the Escherichia coli phoA locus or any of the other psi loci described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号