首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ovaries of 3-month-old Booroola lambs which were heterozygous carriers of a major gene (F) influencing the ovulation rate in mature ewes (i.e. F + lambs) were compared to those ofsimilarly-aged Booroola lambs which were non-carriers of the F-gene (i.e. ++ lambs). The ovaries of the F + Booroola lambs were significantly lighter (P less than 0.01) than those of ++ lambs even though the mean +/- s.e.m. number of follicles (greater than or equal to 1 mm diam.) in the F + lambs was greater than that in the ++ lambs (i.e. F + lambs, 30.2 +/- 2.5 follicles; ++ lambs, 18.4 +/- 1.2 follicles; P less than 0.01). In granulosa cells from non-atretic follicles (greater than or equal to 1 mm diam.) from F + and ++ Booroola lambs, FSH (NIAMDD-FSH-S16) doses of 100 and 1000 ng/ml caused significant stepwise increases (P less than 0.05) in cyclic adenosine 3',5'-monophosphate (cAMP) production compared to that achieved at FSH doses of 0 and 1 ng/ml or at any FSH dose in cells from atretic follicles. However, no significant differences in FSH-induced cAMP production were noted with regard to Booroola genotype or follicular diameter. None of the granulosa cell preparations from non-atretic follicles of 1-2.5 mm diameter from F + lambs (N = 13) or from non-atretic follicles of 1-4.5 mm diameter from ++ lambs (N = 16) responded to LH (NIAMDD-LH-S24; 10 or 1000 ng/ml) to produce significantly more cAMP than did the controls. In contrast, the granulosa cell preparations from non-atretic follicles of 3-4.5 mm diameter from F + lambs (N = 4) and from non-atretic follicles of greater than or equal to 5 mm diameter of ++ lambs (N = 4) produced significantly more cAMP (P less than 0.05) in response to LH (1000 and/or 10 ng/ml) relative to that in the controls. The theca interna from follicles of lambs of both genotypes had functional LH receptors as judged by the androstenedione responses to exogenous LH although no genotypic differences were noted. In F + lambs, the follicular fluid concentrations of testosterone but not oestradiol (i.e. in 1-4.5 mm diam. follicles) and granulosa cell aromatase activity (i.e. in 3-3.5 mm diam. follicles) were significantly higher (both P less than 0.05) than in corresponding follicles or cells from ++ lambs. Collectively the results suggest that the Booroola F-gene influences the composition and function of sheep ovaries before puberty.  相似文献   

2.
Romney ewes were injected intramuscularly once or twice daily for 3 days with 0, 0.1, 0.5, 1 or 5 ml of bovine follicular fluid (bFF) treated with dextran-coated charcoal, starting immediately after injection of cloprostenol to initiate luteolysis on Day 10 of the oestrous cycle. There was a dose-related suppression of plasma concentrations of FSH, but not LH, during the treatment period. On stopping the bFF treatment, plasma FSH concentrations 'rebounded' to levels up to 3-fold higher than pretreatment values. The mean time to the onset of oestrus was also increased in a dose-related manner by up to 11 days. The mean ovulation rates of ewes receiving 1.0 ml bFF twice daily (1.9 +/- 0.2 ovulations/ewe, mean +/- s.e.m. for N = 34) or 5.0 ml once daily (2.0 +/- 0.2 ovulations/ewe, N = 25) were significantly higher than that of control ewes (1.4 +/- 0.1 ovulations/ewe, N = 35). Comparison of the ovaries of ewes treated with bFF for 24 or 48 h with the ovaries of control ewes revealed no differences in the number or size distribution of antral follicles. However, the large follicles (greater than or equal to 5 mm diam.) of bFF-treated ewes had lower concentrations of oestradiol-17 beta in follicular fluid, contained fewer granulosa cells and the granulosa cells had a reduced capacity to aromatize testosterone to oestradiol-17 beta and produce cyclic AMP when challenged with FSH or LH. No significant effects of bFF treatment were observed in small (1-2.5 mm diam.) or medium (3-4.5 mm diam.) sized follicles. Ewes receiving 5 ml bFF once daily for 27 days, from the onset of luteolysis, were rendered infertile during this treatment period. Oestrus was not observed and ovulation did not occur. Median concentrations of plasma FSH fell to 20% of pretreatment values within 2 days. Thereafter they gradually rose over the next 8 days to reach 60% of pretreatment values where they remained for the rest of the 27-day treatment period. Median concentrations of plasma LH increased during the treatment period to levels up to 6-fold higher than pretreatment values. When bFF treatment was stopped, plasma concentrations of FSH and LH quickly returned to control levels, and oestrus was observed within 2 weeks. The ewes were mated at this first oestrus and each subsequently delivered a single lamb.  相似文献   

3.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Gonadotrophins, fecundity genes and ovarian follicular function   总被引:3,自引:0,他引:3  
The Booroola Merino is a sheep breed having a major gene(s) (F) influencing its ovulation-rate. Homozygous (FF), heterozygous (F+) and non-carriers (++) of the gene have ovulation-rates of greater than or equal to 5, 3 or 4 and 1 or 2 respectively with the durations of each oestrous cycle and oestrous behaviour being similar in all genotypes. Although the principal site(s) of gene expression are obscure, FF genotypes have mean plasma concentrations of FSH and LH which are higher than in the F+ ewes, which in turn are higher than in the ++ animals. Thus, the FF and F+ animals provide a unique system in which to examine ovarian function under continual exposure to elevated gonadotrophin concentrations. At the ovarian level, F gene-specific differences in follicular development and function were noted. In small follicles (0.1-1.0 mm dia.), the basal levels of cAMP and the in vitro synthesis of cAMP, progesterone, androstenedione and oestradiol-17 beta in response to LH and FSH were significantly influenced by genotype (FF greater than F+ greater than ++; P less than 0.05). In larger follicles (1-4.5 mm dia.) the granulosa cells from FF and F+ ewes were more responsive to FSH and/or LH than in ++ ewes with respect to cAMP synthesis and they also had higher levels of aromatase activity. In vivo, the ovarian secretion-rates of oestradiol from greater than or equal to 5 ("oestrogenic") follicles in FF ewes, 3-4 such follicles in F+ ewes, and 1-2 such follicles in ++ animals during the follicular phase were similar. In FF and F+ ewes, the preovulatory follicles ovulated at a smaller diameter (i.e. 3-5 mm) than in ++ ewes (greater than 5 mm diam.) and also produced smaller corpora lutea. Thus, after continual exposure to elevated levels of gonadotrophins, follicles may synthesize steroid and mature at smaller diameters compared to those exposed to normal levels of FSH and LH.  相似文献   

5.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

6.
Granulosa cells from follicles of different sizes from Booroola x Merino ewes which were homozygous (FF), heterozygous (F+) or non-carriers(++) of a fecundity gene were obtained 0-48 h after cloprostenol injection on Day 10 of the oestrous cycle. The highest mean amounts of cAMP produced by the cells did not differ between the genotypes. However, in the ++ ewes it was attained by cells from follicles greater than or equal to 5 mm in diameter, whereas in F+ and FF ewes it was attained by cells from follicles 3-4.5 mm in diameter. Cells from 1-2.5-mm diameter follicles of FF ewes were more sensitive to FSH and LH than were corresponding cells from F+ or ++ ewes. Granulosa cells from greater than or equal to 5 mm diameter follicles of ++ ewes 12-24 h after injection of cloprostenol had a lower mean response to FSH and LH than did cells obtained 0-6 or 36-48 h after cloprostenol. No such effect of time was evident for cells from any size of follicles obtained from F+ or FF ewes. In 1-2.5-mm diameter follicles, the mean aromatase activity of granulosa cells from ++ and F+ ewes was similar, but significantly lower than that of cells from FF ewes. In 3-4.5 mm diameter follicles, the mean aromatase activity of cells from F+ and FF ewes was similar, and significantly higher than that of cells from ++ ewes. For all 3 genotypes, there was a significant positive relationship between FSH or LH stimulation of granulosa cell cAMP production and cellular aromatase activity.  相似文献   

7.
Endocrine control of follicular growth was studied in mature Romanov ewes carrying (RF+) or not carrying (R+2) the Booroola Fec gene during an oestrous cycle after gonadotrophin-dependent follicles were suppressed by treatment with an antagonist of GnRH (Antarelix, 0.5 mg per day) and superovulatory treatment was administered. The left ovary was removed after 10 days of treatment (saline or Antarelix) and the right ovary was removed at the end of the superovulatory treatment. Ewes of both genotypes treated with Antarelix had lower plasma LH concentrations than did controls from day 0 to day 10. The inhibitory effect of Antarelix on LH concentration increased with day of treatment. The variability in FSH concentrations during the initial 10 days was reduced by Antarelix treatment in both genotypes. Plasma FSH concentrations were higher in RF+ ewes than in R+2 ewes. In both genotypes, FSH concentrations varied significantly with day of treatment, with the lowest concentrations at day 8 and the highest concentrations at day 5. RF+ ewes had a greater total and atretic number of antral follicles 0.62-1.12, 1.12-2.00 and 2.00-3.00 mm in diameter (classes 2, 3 and 4) than did R+2 ewes before and after superovulatory treatment. After superovulatory treatment, the total number of atretic and non-atretic follicles > 3.00 mm in diameter (class 5) increased in both genotypes. Superovulatory treatment also increased the number of total and atretic class 4 follicles in RF+ only. Conversely, superovulatory treatment decreased the mean number of class 3 follicles in both genotypes, while the number of atretic follicles was decreased only in R+2 ewes. Antarelix treatment significantly reduced the percentage of follicles > 2.00 mm in diameter in RF+ but not in R+2 ewes. Antarelix treatment before superovulatory treatment increased the total number of class 4 follicles in both genotypes but the increase was more significant in RF+ than in R+2 ewes. These results indicate that Antarelix pretreatment favours a greater superovulatory response in Romanov ewes carrying the Fec gene because ovulatory follicles are recruited from a wider range of follicular size classes.  相似文献   

8.
This study investigated the effect of recombinant bovine GH (rGH) on follicle development and LH secretion patterns in ewes. In Experiment 1, 20 ewes (n=10/group) synchronized with progestagen sponges on Day 0 received either a 7 d period of rGH treatment starting on Day 4, or acted as controls. On Day 11, all ewes were unilaterally ovariectomized. Follicles in the excised ovary were characterized on the basis of size, health status and rate of granulosa cell proliferation. Circulating levels of LH, GH, IGF-1 and insulin were monitored. Compared to controls, rGH treatment significantly increased the number of healthy follicles >2.0 mm, reduced the number of 0.25 to 0.5-mm follicles and reduced the number of 0.8 to 2.0-mm early atretic follicles. GH treatment also reduced the mitotic index of 0.25 to 0.5-mm follicles. Recombinant GH treatment had no effect on LH secretion patterns, but plasma GH, IGF-1 and insulin levels were increased in rGH-treated ewes. Because rGH treatment may have had an anti-atresia effect in Experiment 1, the hypothesis for Experiment 2 was that rGH treatment could maintain follicle development beyond 2.5-mm diameter in bovine follicular fluid (bFF)-treated ewes. Forty ewes (n=10/group) were synchronized with progestagen sponges. Starting 5 d after sponge insertion, ewes were treated for 6 d with rGH, bFF, rGH plus bFF, or acted as controls. On Day 12, ewes were sacrificed, and follicles were dissected out of their ovaries and assessed on the basis of size. FSH concentrations were assessed on Days 7, 9 and 11. GH treatment alone significantly increased the number of 2.5 to 4.0-mm follicles compared to controls, whereas no follicles larger than 2.5 mm were present in bFF-treated ewes. In rGH plus bFF-treated ewes, the number of 2.5 to 4.0-mm follicles was similar to controls, but there were less follicles >4.0 mm. GH treatment had no effect on FSH levels, whereas bFF treatment significantly reduced FSH levels. These results expand previous findings that rGH treatment of ewes alters follicle development, but do not suggest that rGH treatment is likely to be of benefit in superovulatory protocols. Furthermore, the data indicate that rGH has an anti-atretic action that is unlikely to be mediated via gonadotropins.  相似文献   

9.
The production of inhibin by granulosa cells was studied in vitro using cells from follicles of various sizes and health. Follicles were recovered on Days 10-13 of the oestrous cycle, from Booroola x Romney ewes which were homozygous (FF) carriers or non-carriers (++) of the fecundity (F) gene. Inhibin was measured using a bioassay based on the suppression of follicle-stimulating hormone (FSH) output by cultured pituitary cells from ovariectomized Romney ewes and, in some instances, for comparative purposes, by radioimmunoassay also. Geometric mean inhibin production by granulosa cells from nonatretic follicles increased with increasing follicle diameter, during the first 24 h of culture, for both genotypes. The geometric mean production of inhibin by cells from nonatretic 3-4.5 mm diameter FF follicles (the largest follicles found in FF ewes), was significantly higher (P less than 0.05) than that by cells from non-atretic 3-4.5 mm diameter ++ follicles, but similar to that of cells from non-atretic greater than or equal to 5 mm diameter ++ follicles. The production of oestradiol-17 beta by cells cultured in the presence of testosterone (1 microgram/ml) followed a pattern similar to cellular inhibin production. There was a positive linear correlation between inhibin and oestradiol-17 beta production during the first 24 h of culture, for both genotypes. In addition to acting as a substrate for oestradiol-17 beta synthesis, testosterone generally had a slight, stimulatory effect on inhibin production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effects of hypophysectomy and unilateral ovariectomy on the total number of follicles with greater than 3 layers of granulosa cells were determined at 4 and 70 days following treatment. The population of preantral follicles (less than 0.23 min diam.) was found to be under the control of gonadotrophins but such control was only evident on a long-term basis. At 70 days after unilateral ovariectomy there was a large increase in the number of preantral follicles but at 70 days after hypophysectomy there was a large decrease. The population of antral follicles (greater than 0.23 mm diam.) was under the immediate control of gonadotrophins. By 4 days after hypophysectomy all large antral follicles had become atretic and the number of antral follicles was further decreased at 70 days after treatment. At 70 days after unilateral ovariectomy there was an increase in the number of antral follicles. The follicular growth rates at 70 days following treatment were decreased in hypophysectomized ewes but increased in ewes after unilateral ovariectomy.  相似文献   

11.
In Romanov ewes at Day 13 or 14 of the cycle, granulosa cells originating from individual follicles were studied in short-term incubations for aromatase activity and thymidine incorporation. The study was performed on 76 follicles of different sizes (2-7 mm diameter) and degree of atresia, as assessed by histological examination of smears of granulosa cells. As atresia progressed, the labelling index and aromatase activity of granulosa cells decreased. In normal follicles, when follicular diameter increased, the labelling index decreased, while aromatase activity of granulosa cells and oestradiol-17 beta concentration in follicular fluid increased. There was a negative relationship between oestradiol concentration in follicular fluid and the labelling index of granulosa cells in vitro (rs = -0.75; P less than 0.01), suggesting an inverse relationship between growth and differentiation of granulosa cells in normal sheep follicles. In normal small and medium-sized follicles (2-6 mm), incubation with FSH (100 ng/ml) for 2 h increased significantly the labelling index of granulosa cells. In normal medium-sized follicles (4-6 mm), incubation with FSH (50 ng/ml) for 1 h decreased the aromatase activity of granulosa cells. From these results, it is suggested that FSH acts mainly on cells in the G1 phase of the cell cycle, which are steroidogenically active, and makes them move into the S phase where their steroidogenic activity is temporarily inhibited.  相似文献   

12.
The tissue contents of adenosine cyclic 3',5'-monophosphate (cAMP) in freshly dissected follicles (0.13-1.00 mm diam.) were significantly higher in Booroola ewes containing a major fecundity gene (FF and F+ ewes) compared to those values in Booroolas with no copy of the gene (++ animals; P less than 0.025). After a 1 h incubation with LH + FSH, the respective proportions of follicles with a diameter of 0.13-0.52 mm (n = 288) and 0.53-1.00 mm (n = 271) that had synthesized greater than or equal to 0.6 pmol cAMP and greater than or equal to 1.0 pmol cAMP were significantly influenced by genotype (Booroola ewes homozygous for the F-gene, FF greater than heterozygous, F+ greater than ++; P less than 0.01 for both follicle size ranges). The contents of progesterone, androstenedione, testosterone and oestradiol-17 beta in minced ethanolic extracts of freshly dissected follicles (n = 188) were undetectable regardless of Booroola genotype. However, when follicles of 0.53-1.00 mm but not 0.13-0.52 mm diameter were cultured for 48 h with LH + FSH under 70 kPa of a 50% O2, 45% N2 and 5% CO2 gas mixture, the proportions that synthesized high levels of progesterone (greater than or equal to 4.0 ng), androstenedione (greater than or equal to 3 ng), and oestradiol (greater than or equal to 0.8 ng) were significantly influenced by genotype (FF greater than F+ greater than or equal to ++; P less than 0.05 for each steroid). No significant genotypic differences were noted for testosterone synthesis. Collectively, these results show that the Booroola F-gene has an influence on the maturation of ovarian follicles from an early stage of growth.  相似文献   

13.
The plasma concentrations of FSH and LH were measured in ovariectomized Booroola FF and ++ ewes before and after treatment with subcutaneous implants of oestradiol-17 beta (0, 2 or 8 cm Silastic capsules; 5 ewes/genotype per dose) or progesterone (0, 1 or 3 Silastic envelopes; 5 ewes/genotype per dose) or subcutaneous injections of steroid-free bovine follicular fluid (bFF; 0, 0.5, 1.0, 2.5 or 5 ml; 4 ewes/genotype per dose). During the first 50 h after implantation of oestradiol or progesterone, or the first 24 h after bFF treatment, the FSH and LH concentrations in plasma were not different between the genotypes although there were significant effects of the steriods and bFF with respect to dose (P less than 0.05). At 6 days after steroid implantation, no gene-specific effects were noted for the plasma concentrations of FSH although significant effects of dose of oestradiol (P less than 0.01) but not progesterone were noted. Also at 6 days after steroid implantation, no gene-specific differences in the pulsatile patterns (i.e. peak frequency or amplitude) of plasma LH concentrations were noted although there were significant effects of steriod dose (P less than 0.05) on frequency and/or amplitude. It is concluded that the higher ovulation-rate in FF than ++ Booroola ewes is unlikely to be due to gene-specific differences in the sensitivity of the hypothalamic-pituitary axis to ovarian hormones.  相似文献   

14.
Specific receptors for 125I-labelled hCG in ovarian follicle wall were located in the theca interna. No specific binding of 125I-labelled hCG was found in theca externa and/or stromal tissue. The kinetics of 125I-labelled hCG binding to theca interna followed second order kinetics with calculated association rate constants (ka +/- s.d.) of 1.57 +/- 0.16 X 10(6) and 0.57 +/- 0.02 X 10(6) litres mol-1 sec-1 at 37 degrees C and 22 degrees C respectively. Dissociation of specifically bound 125I-labelled hCG from theca interna was minimal at 37 degrees C and 22 degrees C. The binding of 125I-labelled hCG to theca interna could be displaced with PMSG, FSH-P and sheep LH but other sheep pituitary hormones and LH-releasing hormone showed little or no cross-reaction. The calculated binding capacities (Bmax) and equilibrium dissociation constants (Kd) for 125I-labelled hCG binding to theca interna did not differ between Romney ewes and Booroola x Romney ewes with and without the fecundity (F) gene on Day 10 of the oestrous cycle, during anoestrus or at 36 h after an injection of cloprostenol on Day 10 of the oestrous cycle. When the data for Day 10 and anoestrus were pooled, the median (range) Bmax and Kd values in non-atretic follicles (greater than or equal to 3 mm diameter) were 12.0 (5.1-23.5) fmol/mg protein and 0.10 (0.05-0.16) nM respectively. At 36 h after cloprostenol injection the respective median (range) Bmax and Kd values in non-atretic follicles (greater than or equal to 3 mm diam.) increased to 46.9 (28.4-70.3) fmol/mg protein and 0.23 (0.13-0.65) nM respectively. In corpora lutea the hCG binding characteristics were similar in all the above breeds/genotypes. On Day 10 of the cycle, the mean Bmax but not the mean Kd value was significantly higher (P less than 0.01) than the corresponding value at 36 h after cloprostenol injection. In granulosa cells, from follicles of greater than or equal to 5 mm diameter of Romney and Booroola x Romney (++) ewes and from follicles of greater than or equal to 3 mm diameter of Booroola x Romney (F+) ewes, the hCG binding characteristics were similar. In granulosa cells from smaller sized follicles from the above breeds/genotypes, no specific hCG binding was noted.  相似文献   

15.
Follicles of various sizes at the surface of the ovary were ablated by electrocautery at the time of cloprostenol-induced luteolysis in ewes and the interval from cloprostenol treatment to the onset of the LH surge determined as an index of the time from luteolysis to ovulation. When follicles 2-4 mm or greater than 4 mm diameter remained in the ovaries, the interval from cloprostenol treatment to the onset of the LH surge was similar to that in sham-operated (control) ewes (55-60 h), whereas when the only follicles remaining were less than 2 mm, the interval was extended by 24 h (P less than 0.05). This study demonstrates that follicles capable of ovulating can be selected from those greater than or equal to 2 mm diameter at luteolysis, emphasizing the flexibility of the sheep ovary in its final selection of the ovulatory follicle.  相似文献   

16.
Evidence suggests that the insulin-like growth factor (IGF) system is involved in follicular growth and development in sheep. However, little information exists as to the role that key peripheral factors play in regulating the expression of IGF components within the follicle. The present study investigated the regulatory effects of FSH and LH on gene expression for IGF ligands and receptors in ovine follicles, using bovine follicular fluid (bFF) and gonadotrophin-releasing hormone antagonist (GnRHa) model systems to perturb endogenous gonadotrophin secretion. Gene expression studies were carried out using in-situ hybridisation with sheep-specific ribonucleotide probes. Treatment of ewes with bFF had no effect on IGF-I mRNA levels. However, IGF-II mRNA levels, particularly in small follicles, and follicular type II IGF-R gene expression significantly increased following bFF administration (P<0.001). Conversely, there was a significant (P<0.001) decrease in type I IGF-R mRNA levels after only 12h of bFF treatment, especially in healthy follicles, although this was transient and was followed by a significant (P<0.01) increase in gene expression levels by 60 h of bFF treatment. Treatment of ewes with GnRHa resulted in a significant increase in mRNA levels encoding IGF-I (P<0.001), IGF-II in early atretic and large follicles (P<0.05), and type II IGF-R in healthy and early atretic follicles (P<0.001). In contrast, GnRHa administration decreased type I IGF-R gene expression levels after 60 h of treatment (P<0.001). These data highlight the roles that endogenous FSH and LH play in regulating IGF ligand and receptor gene expression in the sheep follicle.  相似文献   

17.
Ovarian follicular development was characterized in 24 Spanish Merino ewes to study effects of the follicular status and the FSH commercial product used on follicular growth and subsequent superovulatory response. Estrus was synchronized using 40 mg fluorogestone acetate sponges. The superovulatory treatment consisted in 2 daily i.m. injections of FSH from 48 h before to 12 h after sponge removal. Sheep were assigned randomly to 2 groups treated with 6 decreasing doses (4, 4, 3, 3, 2, 2 mg) of FSH-P or with 6 doses of 1.25 mL of OVAGEN. Growth and regression of all follicles > or = 2 mm were observed by transrectal ultrasonography, and recorded daily from Day 6 before sponge insertion to the first FSH injection, and then twice daily until estrus was detected with vasectomized rams. Differences were detected in follicular development from the first FSH injection to detection of estrus (-48 to 36 h from sponge removal) between groups. Administration of FSH-P increased the appearance of new follicles with respect to OVAGEN (6.3 +/- 0.7 vs 4.8 +/- 0.4; P < 0.05), and the mean number of medium (4 to 5 mm) follicles (8.9 +/- 1.2 vs 6.6 +/- 0.9; P < 0.05). However, the mean number of follicles that regressed in size after sponge removal (5.9 +/- 0.4 vs 3.3 +/- 0.4) and the number of preovulatory sized follicles that did not ovulate (60 vs 42.4%) were also higher in FSH-P treated ewes (P < 0.05). So, finally, there were no differences in ovulation rate, as determined by laparoscopy on Day 7 after sponge removal, between ewes treated with FSH-P or OVAGEN (6.3 +/- 1.9 vs 7.0 +/- 1.7 CL). In all the ewes, the ovulatory response was related (P < 0.05) both to the number of small follicles (2 to 3 mm in diameter) present in the ovaries at the start of treatment with exogenous FSH and to the number of follicles that reached > or = 4 mm in size at estrus, despite differences in the pattern of follicular development when using different commercial products.  相似文献   

18.
The mean plasma concentrations of FSH and LH were significantly higher in FF ewes than in ++ ewes with those F+ animals being consistently in between. These gene-specific differences were found during anoestrus, the luteal phase and during a cloprostenol-induced follicular phase, suggesting that the ovaries of ewes with the F-gene are more often exposed to elevated concentrations of FSH and LH than are the ovaries of ewes without the gene. The gene-specific differences in LH secretion arose because the mean LH amplitudes were 2-3 times greater in FF compared to ++ ewes with the LH amplitudes for F+ ewes being in between. The LH pulse frequencies were similar. In these studies the pulsatile nature of FSH secretion was not defined. The pituitary contents of LH during the luteal phase, were similar in all genotypes whereas for FSH they were significantly higher in the F-gene carriers compared to ++ ewes. The pituitary sensitivity to exogenous GnRH (0.1, 0.5 and 25 micrograms i.v.) was related to genotype. Overall the LH responses to GnRH were lower in FF ewes than in ++ ewes with the results for the F+ ewes being in between. The FSH responses to all GnRH doses in the FF genotype were minimal (i.e. less than 2-fold). In the other genotypes a greater than 2-fold response was noted only at the highest GnRH dose (i.e. 25 micrograms). Treatment of FF and F+ but not ++ ewes with GnRH eventually led to a reduced FSH output, suggesting that the pituitary responses to endogenous GnRH were being down-regulated in the F-gene carriers whereas this was not the case in the non-carriers. Collectively these data confirm that peripheral plasma and the pituitary together with the ovary are compartments in which F-gene differences can be observed. In conclusion, these findings raise the possibility that F-gene-specific differences may also extend to the hypothalamus and/or other regions of the brain.  相似文献   

19.
Scottish Blackface ewes in high body condition (mean score = 2.86) had a higher mean ovulation rate (1.8 v. 0.9; P < 0.05) and more large (⪖ 4 mm diameter) follicles (4.6 v 2.2; P < 0.05) than ewes in low condition (mean score = 1.84) but similar numbers of small (1–4 mm diameter) follicles (6.3 v 6.0; NS). There was little difference in LH profiles with body condition but FSH and prolactin concentrations were significantly greater, during both luteal and follicular phases of the cycle, in ewes in high condition.Despite the relationships between body condition and ovulation rate and between condition and hormone concentrations, within the high condition groups, there was no significant difference in FSH levels with ovulation rate. Prolactin levels were higher in ewes with a single ovulation than in ewes with two or three ovulations. There was a trend towards a higher mean LH pulse frequency in the luteal phase and a higher mean LH pulse amplitude in the follicular phase in ewes with multiple ovulations compared with ewes with a single ovulation. During oestrus, only circulating prolactin concentrations differed with body condition, being significantly higher in ewes in high condition, but mean LH concentrations were higher and FSH concentrations lower in ewes with multiple ovulations. Subsequent luteal function, as measured by circulating progesterone concentrations, was normal in all ewes. It is concluded that body condition affected the size of the large follicle (⪖ 4 mm diameter) population through changes in FSH and possibly pulsatile LH secretion and prolactin secretion during the luteal and follicular phases of the cycle and that the number of follicles that were potentially ovulatory was probably determined during the luteal phase of the cycle. However, their ability to undergo the final stages of development and to ovulate may be related to the amount of LH secreted during the follicular phase.  相似文献   

20.
Aromatase activity was measured in granulosa cells using a 1-h in-vitro assay. This activity correlated with the concentration of oestradiol-17 beta and the ratio of oestradiol-17 beta to testosterone in follicular fluid of individual follicles ranging from 1.5 to 7.0 mm diameter. These data show an 8-10-fold difference in aromatase activity between small and large follicles and that aromatase activity per cell increased in small non-atretic follicles (less than 3.5 mm) whereas it remained relatively constant in large nonatretic follicles (greater than or equal to 3.5 mm). Aromatase activity was much lower in follicles at more advanced stages of atresia. Atresia was assessed using the morphological and the morphometric methods (% of maximum number of granulosa cells/follicle). Although the morphological method of assessment was preferable to the morphometric method, it did not differentiate a decrease in aromatase activity as a very early event in the atretic process. We believe this is due to the inability of these methods to detect follicles in the initial stages of atresia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号