首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the functional integrity of seven primary Nef isolates: five from a long-term nonprogressing human immunodeficiency virus (HIV)-infected individual and one each from two patients with AIDS. One of the seven Nefs was defective for CD4 downregulation, two others were defective for PAK-2 activation, and one Nef was defective for PAK-2 activation and major histocompatibility complex (MHC) class I downregulation. Five of the Nefs were tested and found to be functional for the enhancement of virus particle infectivity. The structural basis for each of the functional defects has been analyzed by constructing a consensus nef, followed by mutational analysis of the variant amino acid residues. Mutations A29V and F193I were deleterious to CD4 downregulation and PAK-2 activation, respectively, while S189R rendered Nef defective for both MHC class I downregulation and PAK-2 activation. A search of the literature identified HIVs from five patients with Nefs predominantly mutated at F193 and from one patient with Nefs predominantly mutated at A29. A29 is highly conserved in all HIV subtypes except for subtype E. F193 is conserved in subtype B (and possibly in the closely related subtype D), but none of the other HIV group M subtypes. Our results suggest that functional distinctions may exist between HIV subtypes.  相似文献   

2.
The interaction of human immunodeficiency virus type 1 (HIV-1) Nef with p21-activated kinase 2 (Pak2) has been proposed to play an important role in T-cell activation and disease progression during viral infection. However, the mechanism by which Nef activates Pak2 is poorly understood. Mutations in most Nef motifs previously reported to be required for Pak2 activation (G2, PxxP72, and RR105) also affect other Nef functions, such as CD4 or major histocompatibility complex class I (MHC-I) downregulation. To better understand Nef interactions with Pak2, we performed mutational analysis of three primary HIV-1 Nef clones that exhibited similar capacities for downregulation of CD4 and MHC-I but variable abilities to associate with activated Pak2. Our results demonstrate that Nef amino acids at positions 85, 89, 187, 188, and 191 (L, H, S, R, and F in the clade B consensus, respectively) are critical for Pak2 association. Mutation of these Nef residues dramatically altered association with Pak2 without affecting Nef expression levels or CD4 and MHC-I downregulation. Furthermore, compensation occurred at positions 89 and 191 when both amino acids were substituted. Since residues 85, 89, 187, 188, and 191 cluster on the surface of the Nef core domain in a region distinct from the dimerization and SH3-binding domains, we propose that these Nef residues form part of a unique binding surface specifically involved in association with Pak2. This binding surface includes exposed and recessed hydrophobic residues and may participate in an as-yet-unidentified protein-protein interaction to facilitate Pak2 activation.  相似文献   

3.
It is well established that the Nef proteins of human and simian immunodeficiency viruses (HIV and SIV) modulate major histocompatibility complex class I (MHC-I) cell surface expression to protect infected cells against lysis by cytotoxic T lymphocytes (CTLs). Recent data supported the observation that Nef also manipulates CTLs directly by down-modulating CD8αβ (J. A. Leonard, T. Filzen, C. C. Carter, M. Schaefer, and K. L. Collins, J. Virol. 85:6867-6881, 2011), but it remained unknown whether this Nef activity is conserved between different lineages of HIV and SIV. In this study, we examined a total of 42 nef alleles from 16 different primate lentiviruses representing most major lineages of primate lentiviruses, as well as nonpandemic HIV-1 strains and the direct precursors of HIV-1 (SIVcpz and SIVgor). We found that the vast majority of these nef alleles strongly down-modulate CD8β in human T cells. Primate lentiviral Nefs generally interacted specifically with the cytoplasmic tail of CD8β, and down-modulation of this receptor was dependent on the conserved dileucine-based motif and two adjacent acidic residues (DD/E) in the C-terminal flexible loop of SIV Nef proteins. Both of these motifs are known to be important for the interaction of HIV-1 Nef with AP-2, and they were also shown to be critical for down-modulation of CD4 and CD28, but not MHC-I, by SIV Nefs. Our results show that down-modulation of CD4, CD8β, and CD28 involves largely overlapping (but not identical) domains and is most likely dependent on conserved interactions of primate lentiviral Nefs with cellular adaptor proteins. Furthermore, our data demonstrate that Nef-mediated down-modulation of CD8αβ is a fundamental property of primate lentiviruses and suggest that direct manipulation of CD8+ T cells plays a relevant role in viral immune evasion.  相似文献   

4.
Nef proteins from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) have been found to associate with an active cellular serine/threonine kinase designated Nef-associated kinase (Nak). The exact identity of Nak remains controversial, with two recent studies indicating that Nak may be either Pak1 or Pak2. In this study, we investigated the hypothesis that such discrepancies arise from the use of different Nef alleles or different cell types by individual investigators. We first confirm that Pak2 but not Pak1 is cleaved by caspase 3 in vitro and then demonstrate that Nak is caspase 3 sensitive, regardless of Nef allele or cell type used. We tested nef alleles from three lentiviruses (HIV-1 SF2, HIV-1 NL4-3, and SIVmac239) and used multiple cell lines of myeloid, lymphoid, and nonhematopoietic origin to evaluate the identity of Nak. We demonstrate that ectopically expressed Pak2 can substitute for Nak, while ectopically expressed Pak1 cannot. We then show that Nef specifically mediates the robust activation of ectopically expressed Pak2, directly demonstrating that Nef regulates Pak2 activity and does not merely associate with activated Pak2. We report that most of the active Pak2 is found bound to Nef, although a fraction is not. In contrast, only a small amount of Nef is found associated with Pak2. We conclude that Nak is Pak2 and that Nef specifically mediates Pak2 activation in a low-abundance complex. These results will facilitate both the elucidation of the role of Nef in pathogenesis and the development of specific inhibitors of this highly conserved function of Nef.  相似文献   

5.
HIV-1 subtype C is predominant in India and globally. In the present study, we analyze HIV-1 subtype C regulatory protein Nef sequences from five recent Indian seroconverters and five long-term survivors (LTSs) for variability at crucial functional domains. Sequence analysis suggested the possibility of using regulatory gene sequences for viral subtyping and evolutionary studies apart from structural genes. In the phylogenetic tree, Indian nef sequences segregated away from other reported subtype C sequences, forming an Indian subclade within subtype C. Our studies also suggested no evidence for the association of truncated Nef with slow progression of disease, as all LTSs had intact Nef. We could identify some variations in juxtapositions to crucial functional domains, especially in seroconverter sequences, when comparing them with others. In phylogenetic analysis, specifically for the base-pair regions 411-428 and 478-525, our seroconverter sequences segregated away from those reported earlier in the literature, indicating specific evolutionary changes in these conserved regions of nef in currently circulating viruses. But the dN/dS ratio for our samples was less than one on comparing them with reported subtype C and representative sequences of different clades, strongly emphasizing the necessity of sequence conservation at different disease stages and even across clades. HLA-I binding epitope predictions for common Indian HLAs indicated that specific mutations in seroconverter Nef may alter the intensity of epitope binding, which may alter the outcome of the immune response. Hence these data would be useful in designing Nef epitopes to be included in multi-epitope HIV-1 vaccine for the Indian population and would also be of immense help in HIV-1 evolutionary studies.  相似文献   

6.

Background

The HIV-1 pathogenic factor, Nef, is a multifunctional protein present in the cytosol and on membranes of infected cells. It has been proposed that a spatial and temporal regulation of the conformation of Nef sequentially matches Nef's multiple functions to the process of virion production. Further, it has been suggested that dimerization is required for multiple Nef activities. A dimerization interface has been proposed based on intermolecular contacts between Nefs within hexagonal Nef/FynSH3 crystals. The proposed dimerization interface consists of the hydrophobic B-helix and flanking salt bridges between R105 and D123. Here, we test whether Nef self-association is mediated by this interface and address the overall significance of oligomerization.

Results

By co-immunoprecipitation assays, we demonstrated that HIV-1Nef exists as monomers and oligomers with about half of the Nef protomers oligomerized. Nef oligomers were found to be present in the cytosol and on membranes. Removal of the myristate did not enhance the oligomerization of soluble Nef. Also, SIVNef oligomerizes despite lacking a dimerization interface functionally homologous to that proposed for HIV-1Nef. Moreover, HIV-1Nef and SIVNef form hetero-oligomers demonstrating the existence of homologous oligomerization interfaces that are distinct from that previously proposed (R105-D123). Intracellular cross-linking by formaldehyde confirmed that SF2Nef dimers are present in intact cells, but surprisingly self-association was dependent on R105, but not D123. SIVMAC239Nef can be cross-linked at its only cysteine, C55, and SF2Nef is also cross-linked, but at C206 instead of C55, suggesting that Nefs exhibit multiple dimeric structures. ClusPro dimerization analysis of HIV-1Nef homodimers and HIV-1Nef/SIVNef heterodimers identified a new potential dimerization interface, including a dibasic motif at R105-R106 and a six amino acid hydrophobic surface.

Conclusions

We have demonstrated significant levels of intracellular Nef oligomers by immunoprecipitation from cellular extracts. However, our results are contrary to the identification of salt bridges between R105 and D123 as necessary for self-association. Importantly, binding between HIV-1Nef and SIVNef demonstrates evolutionary conservation and therefore significant function(s) for oligomerization. Based on modeling studies of Nef self-association, we propose a new dimerization interface. Finally, our findings support a stochastic model of Nef function with a dispersed intracellular distribution of Nef oligomers.  相似文献   

7.
A standard panel of subtype C human immunodeficiency virus type 1 (HIV-1) Env-pseudotyped viruses was created by cloning, sequencing, and characterizing functional gp160 genes from 18 acute and early heterosexually acquired infections in South Africa and Zambia. In general, the gp120 region of these clones was shorter (most evident in V1 and V4) and less glycosylated compared to newly transmitted subtype B viruses, and it was underglycosylated but no different in length compared to chronic subtype C viruses. The gp120s also exhibited low amino acid sequence variability (12%) in V3 and high variability (39%) immediately downstream of V3, a feature shared with newly transmitted subtype B viruses and chronic viruses of both subtypes. When tested as Env-pseudotyped viruses in a luciferase reporter gene assay, all clones possessed an R5 phenotype and resembled primary isolates in their sensitivity to neutralization by HIV-1-positive plasmas. Results obtained with a multisubtype plasma panel suggested partial subtype preference in the neutralizing antibody response to infection. The clones were typical of subtype C in that all were resistant to 2G12 (associated with loss of N-glycosylation at position 295) and most were resistant to 2F5, but all were sensitive to 4E10 and many were sensitive to immunoglobulin G1b12. Finally, conserved neutralization epitopes in the CD4-induced coreceptor binding domain of gp120 were poorly accessible and were difficult to induce and stabilize with soluble CD4 on Env-pseudotyped viruses. These results illustrate key genetic and antigenic properties of subtype C HIV-1 that might impact the design and testing of candidate vaccines. A subset of these gp160 clones are suitable for use as reference reagents to facilitate standardized assessments of vaccine-elicited neutralizing antibody responses.  相似文献   

8.
Nef is a multifunctional accessory protein of primate lentiviruses. Recently, it has been shown that the ability of Nef to downmodulate CD4, CD28, and class I major histocompatibility complex is highly conserved between most or all primate lentiviruses, whereas Nef-mediated downregulation of T-cell receptor-CD3 was lost in the lineage that gave rise to human immunodeficiency virus type 1 (HIV-1). Whether or not other Nef activities are preserved between different groups of primate lentiviruses remained to be determined. Here, we show that nef genes from a large variety of HIVs and simian immunodeficiency viruses (SIVs) enhance virion infectivity and stimulate viral replication in human cells and/or in ex vivo infected human lymphoid tissue (HLT). Notably, nef alleles from unpassaged SIVcpz and SIVsmm enhanced viral infectivity, replication, and cytopathicity in cell culture and in ex vivo infected HLT as efficiently as those from HIV-1 and HIV-2, their human counterparts. Furthermore, nef genes from several highly divergent SIVs that have not been found in humans were also highly active in human cells and/or tissues. Thus, most primate lentiviral Nefs enhance virion infectivity and stimulate viral replication. Moreover, our data show that SIVcpz and SIVsmm Nefs do not require adaptive changes to perform these functions in human cells or tissues and support the idea that nef alleles from other primate lentiviruses would also be capable of promoting efficient virus spread in humans.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) early gene product Nef is a multifunctional protein that alters numerous pathways of T-cell function, including endocytosis, signal transduction, vesicular trafficking, and immune modulation, and is a major determinant of pathogenesis. Individual Nef functions include PAK-2 activation, CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, and enhancement of viral particle infectivity. How Nef accomplishes its multiple tasks presents a difficult problem of mechanistic analysis because of the complications associated with multiple, overlapping functional domains in the context of significant sequence variability. To address these issues we determined the conservation of each Nef residue based on 1,643 subtype B Nef sequences. Mutational analysis based on conservative substitutions and Nef sequence data allowed us to search for amino acids on the surface of Nef that are specifically required for PAK-2 activation. We found residues 85, 89, and 191 to be highly significant determinants for Nef's PAK-2 activation function but functionally unlinked to CD4 and MHC class I downregulation or enhancement of infectivity. These residues are not conserved across HIV-1 subtypes but are confined to separate sets of surface elements within a subtype. Thus, L85/H89/F191 and F85/F89/R191 are dominant in subtype B and subtype E or C, respectively. Our results provide support for developing subtype-specific interventions in HIV-1 disease.  相似文献   

10.
To determine the incidence of human immunodeficiency virus type-1 (HIV-1) subtypes in Fukuoka, Japan, viruses from 41 HIV-1 infected individuals were subtyped. Subtyping by V3-loop enzyme-linked immunosorbent assay (ELISA) showed 31 of the 41 subjects as subtype B (MN type), one as subtype A, one as subtype C, and eight untypable. The subject infected with subtype C was identified as a foreigner; the subtype A subject was Japanese. A phylogenetic analysis of nucleic acid sequences from the env C2-V3 region was also conducted. Genetic subtyping was successful for 25 samples: 23 samples were determined as subtype B, one subtype A and one subtype E. One of the individuals infected with subtype B, as well as the subtype A and subtype E subjects, were not Japanese. This study indicated that subtype B (USA and European type) is still dominant among HIV-1 infections in Fukuoka. Further, no Japanese were subtype E positive, which is increasing in the Kanto region. It is notable, however, that subtype A and subtype C infections, which are rare in Japan, were found in Fukuoka, located far from the metropolitan area of Tokyo.  相似文献   

11.
Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered activity for Nef has important implications for anti-HIV-1 immunity and AIDS pathogenesis.  相似文献   

12.
Over 50% of all human immunodeficiency virus type 1 (HIV-1) infections worldwide are caused by subtype C strains, yet most research to date focuses on subtype B, the subtype most commonly found in North America and Europe. The HIV-1 trans-acting regulatory protein (Tat) is essential for regulating productive replication of HIV-1. Tat is secreted by HIV-infected cells and alters several functions of uninfected bystander cells. One such function is that, by acting at the cell membrane, subtype B Tat stimulates the production of tumor necrosis factor (TNF) and chemokine (C-C motif) ligand 2 (CCL2) from human monocytes and can act as a chemoattractant. In this study, we show that the mutation of a cysteine to a serine at residue 31 of Tat commonly found in subtype C variants significantly inhibits the abilities of the protein to bind to chemokine (C-C motif) receptor 2 (CCR2), induce intracellular calcium flux, stimulate TNF and CCL2 production, and inhibit its chemoattractant properties. We also show that TNF is important in mediating some effects of extracellular Tat. This report therefore demonstrates the important functional differences between subtype C and subtype B Tat and highlights the need for further investigation into the different strains of HIV-1.  相似文献   

13.
Virus-specific T-cell immune responses are important in restraint of human immunodeficiency virus type 1 (HIV-1) replication and control of disease. Plasma viral load is a key determinant of disease progression and infectiousness in HIV infection. Although HIV-1 subtype C (HIV-1C) is the predominant virus in the AIDS epidemic worldwide, the relationship between HIV-1C-specific T-cell immune responses and plasma viral load has not been elucidated. In the present study we address (i) the association between the level of plasma viral load and virus-specific immune responses to different HIV-1C proteins and their subregions and (ii) the specifics of correlation between plasma viral load and T-cell responses within the major histocompatibility complex (MHC) class I HLA supertypes. Virus-specific immune responses in the natural course of HIV-1C infection were analyzed in the gamma interferon (IFN-gamma)-enzyme-linked immunospot assay by using synthetic overlapping peptides corresponding to the HIV-1C consensus sequence. For Gag p24, a correlation was seen between better T-cell responses and lower plasma viral load. For Nef, an opposite trend was observed where a higher T-cell response was more likely to be associated with a higher viral load. At the level of the HLA supertypes, a lower viral load was associated with higher T-cell responses to Gag p24 within the HLA A2, A24, B27, and B58 supertypes, in contrast to the absence of such a correlation within the HLA B44 supertype. The present study demonstrated differential correlations (or trends to correlation) in various HIV-1C proteins, suggesting (i) an important role of the HIV-1C Gag p24-specific immune responses in control of viremia and (ii) more rapid viral escape from immune responses to Nef with no restraint of plasma viral load. Correlations between the level of IFN-gamma-secreting T cells and viral load within the MHC class I HLA supertypes should be considered in HIV vaccine design and efficacy trials.  相似文献   

14.
Typical human immunodeficiency virus-1 subtype B (HIV-1B) sequences present a GPGR signature at the tip of the variable region 3 (V3) loop; however, unusual motifs harbouring a GWGR signature have also been isolated. Although epidemiological studies have detected this variant in approximately 17-50% of the total infections in Brazil, the prevalence of B"-GWGR in the southernmost region of Brazil is not yet clear. This study aimed to investigate the C2-V3 molecular diversity of the HIV-1B epidemic in southernmost Brazil. HIV-1 seropositive patients were ana-lysed at two distinct time points in the state of Rio Grande do Sul (RS98 and RS08) and at one time point in the state of Santa Catarina (SC08). Phylogenetic analysis classified 46 individuals in the RS98 group as HIV-1B and their molecular signatures were as follows: 26% B"-GWGR, 54% B-GPGR and 20% other motifs. In the RS08 group, HIV-1B was present in 32 samples: 22% B"-GWGR, 59% B-GPGR and 19% other motifs. In the SC08 group, 32 HIV-1B samples were found: 28% B"-GWGR, 59% B-GPGR and 13% other motifs. No association could be established between the HIV-1B V3 signatures and exposure categories in the HIV-1B epidemic in RS. However, B-GPGR seemed to be related to heterosexual individuals in the SC08 group. Our results suggest that the established B"-GWGR epidemics in both cities have similar patterns, which is likely due to their geographical proximity and cultural relationship.  相似文献   

15.
SIV and HIV Nef proteins disrupt T-cell receptor machinery by down-modulating cell surface expression of CD4 and expression or signaling of CD3-TCR. Nef also down-modulates class I major histocompatibility complex (MHC) surface expression. We show that SIV and HIV-1 Nefs down-modulate CD28, a major co-stimulatory receptor that mediates effective T-cell activation, by accelerating CD28 endocytosis. The effects of Nef on CD28, CD4, CD3 and class I MHC expression are all genetically separable, indicating that all are selected independently. In cells expressing a Nef-green fluorescent protein (GFP) fusion, CD28 co-localizes with the AP-2 clathrin adaptor and Nef-GFP. Mutations that disrupt Nef interaction with AP-2 disrupt CD28 down-regulation. Furthermore, HIV and SIV Nefs use overlapping but distinct target sites in the membrane-proximal region of the CD28 cytoplasmic domain. Thus, Nef probably induces CD28 endocytosis via the AP-2 pathway, and this involves a ternary complex containing Nef, AP-2 and CD28. The likely consequence of the concerted down-regulation of CD28, CD4 and/or CD3 by Nef is disruption of antigen-specific signaling machineries in infected T cells following a productive antigen recognition event.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) Nef activation of p21-activated kinase 2 (PAK-2) was recapitulated in a cell-free system consisting of in vitro-transcribed RNA, rabbit reticulocyte lysate, and microsomal membranes on the basis of the following observations: (i) Nef associated with a kinase endogenous to the rabbit reticulocyte lysate that was identified as PAK-2, (ii) Nef-associated kinase activity was detected with Nefs from HIV-1(SF2), HIV-1(YU2), and SIV(mac239), (iii) kinase activation was not detected with a myristoylation-defective Nef (HIV-1(SF2)NefG2A) or with a Nef defective in PAK-2 activation but fully competent in other Nef functions (HIV-1(SF2)NefF195I), and (iv) Nef-associated kinase activation required activated endogenous p21 GTPases (Rac1 or Cdc42). The cell-free system was used to analyze the mechanism of Nef activation of PAK-2. First, studies suggest that the p21 GTPases may act transiently to enhance Nef activation of PAK-2 in vitro. Second, addition of wortmannin to the cell-free system demonstrated that Nef activation of PAK-2 does not require PI 3-kinase activity. Third, ultracentrifugation analysis revealed that whereas the majority of Nef and PAK-2 partitioned to the supernatant, Nef-associated PAK-2 activity partitioned to the membrane-containing pellet as a low-abundance complex. Lastly, Nef activation of PAK-2 in vitro requires addition of microsomal membranes either during or after translation of the Nef RNA. These results are consistent with a model in which activation of PAK-2 by Nef occurs by recruiting PAK-2 to membranes. As demonstrated herein, the cell-free system is a new and important tool in the investigation of the mechanism of PAK-2 activation by Nef.  相似文献   

17.
Individuals infected with human immunodeficiency virus type 1 (HIV-1) subtype C infrequently harbour X4 viruses. We studied R5 and X4 biological clones generated from HIV-1 subtype C-infected individuals. All subtype C R5 viruses demonstrated slower profiles of replication on CD4+ lymphocytes in comparison to subtype B viruses, whereas subtype C X4 viruses replicated with comparable efficiency to subtype B X4 viruses. No differences were identified in CC or CXC chemokine inhibitions (RANTES and SDF-1α, respectively) between subtype C and subtype B viruses. Immature dendritic cells were shown in coculture experiments to similarly enhance the infection of subtype C and subtype B R5 as well as X4 viruses. By amino acid sequence analysis, we showed that the R5 and X4 subtype C gp120 envelope gene alterations were similar to those for a switching subtype B virus, specifically with respect to the V3 charge and envelope N-linked glycosylation patterns. By phylogenetic analysis, we showed that one patient was infected with HIV-1 C′ and the other was infected with HIV-1 C" and that one of the patients harbored a virus that was a recombinant in the gp120 env gene between an R5 and an X4 virus, with the resultant virus being R5. No differences were identified between the long terminal repeat regions of the subtype C R5 and X4 biological clones. These results indicate that even though R5 subtype C viruses are restrictive for virus replication, the R5-to-X4 phenotype switch can occur and does so in a manner similar to that of subtype B viruses.  相似文献   

18.
19.
An evolving dominance of human immunodeficiency virus type 1 subtype C (HIV-1C) in the AIDS epidemic has been associated with a high prevalence of HIV-1C infection in the southern African countries and with an expanding epidemic in India and China. Understanding the molecular phylogeny and genetic diversity of HIV-1C viruses may be important for the design and evaluation of an HIV vaccine for ultimate use in the developing world. In this study we analyzed the phylogenetic relationships (i) between 73 non-recombinant HIV-1C near-full-length genome sequences, including 51 isolates from Botswana; (ii) between HIV-1C consensus sequences that represent different geographic subsets; and (iii) between specific isolates and consensus sequences. Based on the phylogenetic analyses of 73 near-full-length genomes, 16 "lineages" (a term that is used hereafter for discussion purposes and does not imply taxonomic standing) were identified within HIV-1C. The lineages were supported by high bootstrap values in maximum-parsimony and neighbor-joining analyses and were confirmed by the maximum-likelihood method. The nucleotide diversity between the 73 HIV-1C isolates (mean value of 8.93%; range, 2.9 to 11.7%) was significantly higher than the diversity of the samples to the consensus sequence (mean value of 4.86%; range, 3.3 to 7.2%, P < 0.0001). The translated amino acid distances to the consensus sequence were significantly lower than distances between samples within all HIV-1C proteins. The consensus sequences of HIV-1C proteins accompanied by amino acid frequencies were presented (that of Gag is presented in this work; those of Pol, Vif, Vpr, Tat, Rev, Vpu, Env, and Nef are presented elsewhere [http://www.aids.harvard.edu/lab_research/concensus_sequence.htm]). Additionally, in the promoter region three NF-kappa B sites (GGGRNNYYCC) were identified within the consensus sequences of the entire set or any subset of HIV-1C isolates. This study suggests that the consensus sequence approach could overcome the high genetic diversity of HIV-1C and facilitate an AIDS vaccine design, particularly if the assumption that an HIV-1C antigen with a more extensive match to the circulating viruses is likely to be more efficacious is proven in efficacy trials.  相似文献   

20.
To better understand the virological aspect of the expanding AIDS epidemic in southern Africa, a set of 23 near-full-length clones of human immunodeficiency virus type 1 (HIV-1) representing eight AIDS patients from Botswana were sequenced and analyzed phylogenetically. All study viruses from Botswana belonged to HIV-1 subtype C. The interpatient diversity of the clones from Botswana was higher than among full-length isolates of subtype B or among a set of full-length HIV-1 genomes of subtype C from India (mean value of 9. 1% versus 6.5 and 4.3%, respectively; P < 0.0001 for both comparisons). Similar results were observed in all genes across the entire viral genome. We suggest that the high level of HIV-1 diversity might be a typical feature of the subtype C epidemic in southern Africa. The reason or reasons for this diversity are unclear, but may include an altered replication efficiency of HIV-1 subtype C and/or the multiple introduction of different subtype C viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号