共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo function of regulatory DNA sequence elements of a major histocompatibility complex class I gene. 下载免费PDF全文
J E Maguire W I Frels J C Richardson J D Weissman D S Singer 《Molecular and cellular biology》1992,12(7):3078-3086
Major histocompatibility complex class I genes are expressed in nearly all somatic tissues, although their level of expression varies. By analysis of a set of promoter deletion mutants introduced into transgenic mice, a complex regulatory element, consisting of overlapping enhancer and silencer activities, is demonstrated to function as a tissue-specific regulator of class I expression. The enhancer activity predominates in lymphoid tissues but not in nonlymphoid tissues. In contrast to the tissue-specific functions of the complex regulatory element, a second novel silencer element is shown to function in both lymphoid and nonlymphoid tissues. The complement of DNA-binding factors in different cell lines is shown to correlate with the levels of class I expression. 相似文献
2.
3.
Identification of negative and positive regulatory elements associated with a class I major histocompatibility complex gene. 总被引:7,自引:5,他引:7 下载免费PDF全文
Regulatory DNA sequence elements were functionally identified in the 5'-flanking region of a gene, PD1, which encodes a porcine classical transplantation antigen. Both a positive regulatory element and a novel negative regulatory DNA element were mapped within 1.1 kilobases upstream of exon 1. The negative regulatory element reduced the activity of both the homologous PD1 promoter and a heterologous simian virus 40 promoter. In vivo competition experiments indicated that the functions of the PD1 positive and negative regulatory elements are mediated by distinct cellular trans-acting factors. The PD1 positive regulatory element interacted with cellular factors in common with those binding to the simian virus 40 enhancer. Finally, the negative regulatory element required the presence of a positive regulatory element to function. This interaction between positive and negative regulatory elements represents a novel mechanism for regulating gene expression. 相似文献
4.
Functional expression of a heterologous major histocompatibility complex class I gene in transgenic mice. 总被引:3,自引:1,他引:3 下载免费PDF全文
C Bieberich T Yoshioka K Tanaka G Jay G Scangos 《Molecular and cellular biology》1987,7(11):4003-4009
The regulated expression of major histocompatibility complex class I antigens is essential for assuring proper cellular immune responses. To study H-2 class I gene regulation, we have transferred a foreign class I gene to inbred mice and have previously shown that the heterologous class I gene was expressed in a tissue-dependent manner. In this report, we demonstrate that these mice expressed the transgenic class I molecule on the cell surface without any alteration in the level of endogenous H-2 class I antigens. Skin grafts from transgenic mice were rapidly rejected by mice of the background strain, indicating that the transgenic antigen was expressed in an immunologically functional form. As with endogenous H-2 class I genes, the class I transgene was inducible by interferon treatment and suppressible by human adenovirus 12 transformation. Linkage analysis indicated that the transgene was not closely linked to endogenous class I loci, suggesting that trans-regulation of class I genes can occur for class I genes located outside the major histocompatibility complex. 相似文献
5.
6.
7.
8.
9.
10.
DNase I hypersensitive sites flank the mouse class II major histocompatibility complex during B cell development 总被引:1,自引:0,他引:1
S Carson 《Nucleic acids research》1991,19(18):5007-5014
The mouse class II major histocompatibility complex (MHC) encodes a polymorphic, multigene family important in the immune response, and is expressed mainly on mature B cells, on certain types of dendritic cells and is also inducible by gamma-interferon on antigen presenting cells. To study the regulatory elements which control this expression pattern, we have examined the chromatin structure flanking the class II MHC region, in particular during B cell differentiation. Using a panel of well-characterised mouse cell lines specific for different stages of B cell development (pre-B, B, plasma cell) as well as non-B cell lines, we have mapped the DNase I hypersensitive (DHS) sites adjacent to the mouse MHC class II region. The results presented show, for the first time that there are specific hypersensitive sites flanking the class II MHC locus during pre B cell, B cell and plasma cell stages of B cell differentiation, irrespective of the status of class II MHC expression. These hypersensitive sites are not found in T cell, fibroblast or uninduced myelomonocytic cell lines. This suggests that these DHS sites define a developmentally stable, chromatin structure, which can be used as a marker of B cell lineage commitment and may indicate that a combination of these hypersensitive sites reflect regulatory proteins involved in the immediate expression of a particular class II MHC gene or possibly control of the entire locus. 相似文献
11.
Suppression of major histocompatibility complex class I and class II gene expression in Listeria monocytogenes-infected murine macrophages 总被引:1,自引:0,他引:1
Stephanie Schüllera Silke Küglera Werner Goebela 《FEMS immunology and medical microbiology》1998,20(4):289-299
Macrophage cells play a central role during infection with Listeria monocytogenes by both providing a major habitat for bacterial multiplication and presenting bacterial antigens to the immune system. In this study, we investigated the influence of L. monocytogenes infection on the expression of MHC class I and class II genes in two murine macrophage cell lines. Steady-state levels of I-Aβ chain mRNA were decreased in both resting J774A.1 and P388D1 macrophages infected with L. monocytogenes whereas reduction of H-2K mRNA was only observed in P388D1 cells. In addition, L. monocytogenes suppressed induction of MHC class I and class II mRNAs in response to γ-interferon as well as the maintenance of the induced state in activated P388D1 macrophages. Exposure to the non-pathogenic species L. innocua or a deletion mutant of L. monocytogenes, which lacks the lecithinase operon, did not cause a reduction in H-2K and I-Aβ mRNA levels nor suppress expression of Ia antigens. Inhibition of MHC gene expression may represent an important part of the cross-talk between L. monocytogenes and the macrophage that probably influences the efficiency of a T cell-mediated immune response and thus the outcome of a listerial infection. 相似文献
12.
DNA sequence analysis of a class I gene (Q10), which maps to the Qa2,3 locus in the C57BL/10 (H-2b haplotype) mouse, reveals that it is almost identical to a cDNA clone (pH16) isolated from a SWR/J (H-2q haplotype) mouse liver cDNA library. Exon 5, in particular, has an unusual structure such that a polypeptide product is unlikely to be anchored in the cell membrane. Our findings suggest that the two sequences are derived from allelic class I genes, which are nonpolymorphic, in contrast to H-2K allelic sequences from the same mice, and they may encode liver-specific polypeptides of unknown function. Our previous studies indicate that the Q10 gene is a potential donor gene for the generation of mutations at the H-2K locus by inter-gene transfer of genetic information. Thus the lack of polymorphism in class I genes at the Q10 locus implies either that they are not recipients for such exchanges or that selective pressure prevents the accumulation of mutations in genes at this locus. 相似文献
13.
14.
Chavatte-Palmer P Guillomot M Roïz J Heyman Y Laigre P Servely JL Constant F Hue I Ellis SA 《Cloning and stem cells》2007,9(3):346-356
Abnormally increased placental expression of major histocompatibility complex class I (MHC-I) molecules at the trophoblastic surface has been suggested previously to be the cause of early fetal loss in nuclear transfer (NT) bovine pregnancies. Here, we report the lack of expression of MHC-I at the trophoblastic surface at D30 and D60 and in placentomes from D60 to term in placentas obtained by NT from three different genotypes and by artificial insemination, whatever the outcome of the pregnancy. MHC-I expression was assessed by immunohistochemistry using four different antibodies, including a novel beta2-microglobulin antibody. The MHC-I type of the clones was established using reference strand-mediated conformation analysis (RSCA); however, since it proved problematic to type the recipient animals in the same way, outcome of pregnancy could not be related to MHC compatibility. In conclusion, the present study provides no evidence to support abnormal expression of MHC-I on the trophoblastic surface in clones as a major cause of fetal loss during pregnancy after NT. 相似文献
15.
Cell surface expression of an in vitro recombinant class II/class I major histocompatibility complex gene product 总被引:1,自引:0,他引:1
Chimeric histocompatibility genes encoding the amino-terminal (beta 1) domain of the class II Ak beta polypeptide and the carboxy-terminal (C2, transmembrane, and intracytoplasmic) domains of either the class I H-2Ld or H-2Dd molecules were stably introduced into mouse L cells. Although both were transcribed, only 5' Ak beta/3' H-2Dd transformants had significant cell membrane expression of a 30-40 kd, heterogeneous glycoprotein containing Ak beta 1 and H-2Dd (C2) serological epitopes. These transformants had a unique pattern of reactivity with monoclonal antibodies previously identified as requiring the Ak beta 1 domain for recognition of complete I-A molecules. These results allow new insight into the structural requirements for cell surface expression of proteins and provide unique cellular reagents for the dissection of humoral and cell-mediated recognition of MHC molecules. 相似文献
16.
A complex regulatory DNA element associated with a major histocompatibility complex class I gene consists of both a silencer and an enhancer. 总被引:3,自引:4,他引:3 下载免费PDF全文
A novel regulatory element which contributes to the regulation of quantitative, tissue-specific differences in gene expression has been found between -771 and -676 bp upstream of the major histocompatibility complex (MHC) class I gene, PD1. Molecular dissection of this element reveals the presence of two overlapping functional activities: an enhancer and a silencer. Distinct nuclear factors bind to the overlapping enhancer and silencer DNA sequence elements within the regulatory domain. The levels of factors binding the silencer DNA sequence in different cell types are inversely related to levels of class I expression; in contrast, factors binding the enhancer DNA sequence can be detected in all cells. In cultured cell lines, inhibition of protein synthesis leads to the rapid loss of silencer complexes, with a concomitant increase in both enhancer complexes and MHC class I RNA. From these data, we conclude that a labile silencer factor competes with a constitutively expressed, stable enhancer factor for overlapping DNA-binding sites; the relative abundance of the silencer factor contributes to establishing steady-state levels of MHC class I gene expression. 相似文献
17.
18.
Yang Y 《Microbes and infection / Institut Pasteur》2003,5(1):39-47
Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules on the surface of antigen-presenting cells is an effective extracellular representation of the intracellular antigen content. The intracellular proteasome-dependent proteolytic machinery is required for generating MHC class I-presented peptides. These peptides appear to be derived mainly from newly synthesized defective ribosomal products, ensuring a rapid cytotoxic T lymphocyte-mediated immune response against infectious pathogens. Here we discuss the generation of MHC class I antigens on the basis of the currently understood molecular, biochemical and cellular mechanisms. 相似文献
19.
Rejection of B16 melanoma induced by expression of a transfected major histocompatibility complex class I gene. 总被引:1,自引:0,他引:1 下载免费PDF全文
Transfection of a functional major histocompatibility complex class I gene into certain tumor cells, induced by oncogenic viruses or chemical carcinogens, can effectively abrogate their tumorigenic activity. Since experimentally induced tumors possess strong tumor-specific transplantation antigens, expression of cell surface class I antigens may present the tumor cells to appropriate immune effector cells. Most spontaneously arising tumors do not possess tumor-specific transplantation antigens, and their tumorigenicity may not be affected by the expression of a transfected class I gene. We demonstrate that the poorly immunogenic B16-BL6 melanoma can be rendered nontumorigenic in syngeneic mice by the expression of the class I H-2K antigen but not the class II I-A antigen. Furthermore, the poorly tumorigenic, class I-expressing B16-BL6-transfected cells can effectively immunize syngeneic C57BL/6 mice against the highly tumorigenic, class I-deficient B16-BL6 parental cells. Our success in experimentally manipulating the tumorigenicity of a spontaneously derived neoplasm offers hope for a potential modality for the effective treatment of human cancer. 相似文献