首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subunit structure was studied of islets-activating protein (IAP), a new protein recently isolated from the culture media of Bordetella pertussis and possessing a unique action, i.e., potentiating insulin secretory responses of animals, IAP dissociated into three subunits, F-1, F-2, and F-3, when incubated in 8M urea. Three subunits isolated by chromatography on CM-Sepharose and DEAE-Sepharose columns showed different molecular weights (F-1: 44,000, F-2: 20,000, F-3: 11,000) and different isoelectric points, but similar amino acid compositions. The F-1 subunit consisted of two polypeptide chains linked by S-S bonding(s), while the F-2 and F-3 subunits were single-chain peptides. These subunits, none of which was biologically active alone, associated upon incubation for 2 h at 37 degrees C and regained biological activities after association only when the F-3 subunit was present in the association product. Thus, the F-3 subunit was essential, and the F-1 and F-2 subunits were permissive, for the development of IAP activity in animals.  相似文献   

2.
M Tamura  K Nogimori  S Murai  M Yajima  K Ito  T Katada  M Ui  S Ishii 《Biochemistry》1982,21(22):5516-5522
The subunit structure of islet-activating protein (IAP), pertussis toxin, has been analyzed to study a possibility that this protein is one of the A-B toxins [Gill, D. M. (1978) in Bacterial Toxins and Cell Membranes (Jeljaszewicz, J., & Wadstrom, T., Eds.) pp 291-332, Academic Press, New York]. Heating IAP with 1% sodium dodecyl sulfate caused its dissociation into five dissimilar subunits named S-1 (with a molecular weight of 28 000), S-2 (23 000), S-3 (22 000), S-4 (11 700), and S-5 (9300), as revealed by polyacrylamide gel electrophoresis; their molar ratio in the native IAP was 1:1:1:2:1. The molecular weight of IAP estimated by equilibrium ultracentrifugation was 117 000 which was not at variance with the value obtained by summing up molecular weights of the constituent subunits. The preparative separation of these IAP subunits was next undertaken; exposure of IAP to 5 M ice-cold urea for 4 days followed by column chromatography with carboxymethyl-Sepharose caused sharp separation of S-1 and S-5, leaving the other subunits as two dimers. These dimers were then dissociated into their constituent subunits, i.e., S-2 and S-4 for one dimer and S-3 and S-4 for the other, after 16-h exposure to 8 M urea; these subunits were obtained individually upon further chromatography on a diethylaminoethyl-Sepharose column. Subunits other than S-1 were adsorbed as a pentamer by a column using haptoglobin as an affinity adsorbent. The same pentamer was obtained by adding S-5 to the mixture of two dimers. Neither this pentamer nor other oligomers (or protomers) exhibited biological activity in vivo. Recombination of S-1 with the pentamer at the 1:1 molar ratio yielded a hexamer which was identical with the native IAP in electrophoretic mobility and biological activity to enhance glucose-induced insulin secretion when injected into rats. In the broken-cell preparation, S-1 was biologically as effective as the native IAP; both catalyzed ADP-ribosylation of a protein in membrane preparations from rat C6 glioma cells. In conclusion, IAP is an oligomeric protein consisting of an A (active) protomer (the biggest subunit) and a B (binding) oligomer which is produced by connecting two dimers by the smallest subunit in a noncovalent manner. Rationale for this terminology is discussed based on the A-B model.  相似文献   

3.
The biological activities were studied of a new protein, islets-activating protein (IAP), purified from the culture medium of Bordetella pertussis. Rats injected intravenously with 1 microgram of purified IAP exhibited markedly enhanced insulin secretory responses to glucose, glucagon, epinephrine, and sulfonylureas over a period from 3 to 10 days after the injection. The degree and duration of the enhancement were proportional to the dose of IAP; the maximal effect induced by 1-2 microgram of IAP persisted for as long as 2 months. There was a highly significant correlation between the enhancement of insulin secretion and suppression of epinephrine hyperglycemia over a wide range of doses of IAP, indicating that suppression of epinephrine hyperglycemia resulted from hypoglycemic action of insulin secreted in response to epinephrine challenge. Additional actions of IAP were observed in mice; mice treated with higher doses of IAP showed symptoms were observed when lower doses of IAP were injected into mice. Thus, it is concluded that IAP is a protein primarily possessing a unique action to potentiate insulin secretory responses of experimental animals to nutritional and hormonal stimuli.  相似文献   

4.
Islet-activating protein (IAP), pertussis toxin, is a hexameric protein composed of an A protomer and a B oligomer, the residual pentamer having such a subunit assembly that two different dimers, dimer 1 and dimer 2, are connected with each other by means of the smallest C subunit. Incubation of IAP with formaldehyde and pyridine-borane produced the modified toxin in which most of the free amino groups were dimethylated. The methylated and nonmethylated (native) IAP were disintegrated into their respective constituent components, which were then cross combined to reconstitute hybrid toxins with the original hexameric structure. The binding of the B oligomer to the mammalian cell surface via dimer 2 was, but the binding via dimer 1 was not, seriously impaired by methylation of amino groups in the protein. The binding of the B oligomer allowed the A protomer to enter cells and to catalyze ADP-ribosylation of a membrane Mr 41 000 protein. The diverse biological activities of IAP occurring by this mechanism were mimicked by not only methylated IAP but also all hybrid toxins, indicating that the free amino groups in the protein were not essential for the enzyme activity of the A protomer and that the A protomer was able to enter cells if the B oligomer bound to cells "monovalently" via dimer 1. An additional effect of the B oligomer binding, i.e., the direct stimulation, without the transport of the A protomer, of cells leading to mitosis in lymphocytes in vitro or increases in circulating lymphocytes in vivo, was not mimicked by hybrid toxins containing methylated dimer 2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Treatment of membranes with islet activating protein (IAP), a toxin from Bordetella pertussis, results in abolition of GTP-dependent, receptor-mediated inhibition of adenylate cyclase. This appears to result from IAP-catalyzed ADP-ribosylation of a 41,000-Da membrane-bound protein. A protein with 41,000- and 35,000-Da subunits has been purified from rabbit liver membranes as the predominant substrate for IAP. This protein has now been shown to be capable of regulating membrane-bound adenylate cyclase activity of human platelets under various conditions. The characteristics of the actions of the IAP substrate are as follows. 1) Purified 41,000/35,000-Da dimer is capable of restoring the inhibitory effects of guanine nucleotides and the alpha 2-adrenergic agonist, epinephrine, on the adenylate cyclase activity of IAP-treated membranes. 2) The subunits of the dimer dissociate in the presence of guanine nucleotide analogs or A1(3+), Mg2+, and F-. The 41,000-Da subunit has a high affinity binding site for guanine nucleotides. 3) The resolved 35,000-Da subunit of the dimer mimics guanine nucleotide- and epinephrine-induced inhibition of adenylate cyclase. 4) The resolved (unliganded) 41,000-Da subunit stimulates adenylate cyclase activity and relieves guanine nucleotide- +/- epinephrine-induced inhibition of the enzyme. In contrast, the GTP gamma S-bound form of the 41,000-Da subunit inhibits adenylate cyclase activity, although with lower apparent affinity than does the 35,000-Da subunit. 5) The 35,000-Da subunit increases the rate of deactivation of Gs, the stimulatory regulatory protein of adenylate cyclase. In contrast, the 41,000-Da subunit can interact with Gs and inhibit its deactivation. These data strongly suggest that the IAP substrate is another dimeric, guanine nucleotide-binding regulatory protein and that it is responsible for inhibitory modulation of adenylate cyclase activity.  相似文献   

6.
Drosophilia spectrin. I. Characterization of the purified protein   总被引:18,自引:14,他引:4  
We purified a protein from Drosophila S3 tissue culture cells that has many of the diagnostic features of spectrin from vertebrate organisms: (a) The protein consists of two equimolar subunits (Mr = 234 and 226 kD) that can be reversibly cross-linked into a complex composed of equal amounts of the two subunits. (b) Electron microscopy of the native molecule reveals two intertwined, elongated strands with a contour length of 180 nm. (c) Antibodies directed against vertebrate spectrin react with the Drosophila protein and, similarly, antibodies to the Drosophila protein react with vertebrate spectrins. One monoclonal antibody has been found to react with both of the Drosophila subunits and with both subunits of vertebrate brain spectrin. (d) The Drosophila protein exhibits both actin-binding and calcium-dependent calmodulin-binding activities. Based on the above criteria, this protein appears to be a bona fide member of the spectrin family of proteins.  相似文献   

7.
8.
We resolved from spinach (Spinacia oleracea) leaf extracts four Ca2+-independent protein kinase activities that phosphorylate the AMARAASAAALARRR (AMARA) and HMRSAMSGLHLVKRR (SAMS) peptides, originally designed as specific substrates for mammalian AMP-activated protein kinase and its yeast homolog, SNF1. The two major activities, HRK-A and HRK-C (3-hydroxy-3-methylglutaryl-coenzyme A reductase kinase A and C) were extensively purified and shown to be members of the plant SnRK1 (SNF1-related protein kinase 1) family using the following criteria: (a) They contain 58-kD polypeptides that cross-react with an antibody against a peptide sequence characteristic of the SnRK1 family; (b) they have similar native molecular masses and specificity for peptide substrates to mammalian AMP-activated protein kinase and the cauliflower homolog; (c) they are inactivated by homogeneous protein phosphatases and can be reactivated using the mammalian upstream kinase; and (d) they phosphorylate 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis at the inactivating site, serine (Ser)-577. We propose that HRK-A and HRK-C represent either distinct SnRK1 isoforms or the same catalytic subunit complexed with different regulatory subunits. Both kinases also rapidly phosphorylate nitrate reductase purified from spinach, which is associated with inactivation of the enzyme that is observed only in the presence of 14-3-3 protein, a characteristic of phosphorylation at Ser-543. Both kinases also inactivate spinach sucrose phosphate synthase via phosphorylation at Ser-158. The SNF1-related kinases therefore potentially regulate several major biosynthetic pathways in plants: isoprenoid synthesis, sucrose synthesis, and nitrogen assimilation for the synthesis of amino acids and nucleotides.  相似文献   

9.
Islet-activating protein (IAP), pertussis toxin, is an oligomeric protein (Tamura, M., Nogimori, K., Murai, S., Yajima, M., Ito, K., Katada, T., Ui, M., and Ishii, S. (1982) Biochemistry 21, 5516-5522), the biggest subunit (Mr = 28,000, referred to as the A-protomer) of which catalyzes transfer of the ADP-ribose moiety of NAD to the membrane Mr = 41,000 protein. The pentamer, termed the B-oligomer, consisting of the residual subunits was the moiety of IAP that was responsible for binding to the cell surface, as revealed by competitive inhibition of the development of the IAP actions on intact rat C6 glioma cells and rat adipocytes. The binding of the B-oligomer to its receptor proteins was divalent via the constituent two dimers; it stimulated mitosis of lymphocytes and caused an insulin-like action to enhance glucose oxidation in adipocytes, just as did concanavalin A, presumably as a result of cross-linking or aggregation of the membrane proteins. The A-promoter displayed its biological action on adipocytes only when the B-oligomer had been bound to the cells. Thus, IAP is a typical A-B toxin in which the B-oligomer is first bound to the cell surface proteins to enable the A-protomer to reach to the site of its action within the cell. Diverse biological actions of pertussis toxin may be accounted for by the mitogenic action of the B-oligomer as well as ADP-ribosyltransferase activity of the A-promoter.  相似文献   

10.
Chemical modification of amino groups in the molecule of islet-activating protein (IAP), pertussis toxin, resulted in differential modification of biological activities of the toxin estimated in vivo with rats. Acetamidination of ε-amino groups of 50% (or more) of lysine residues in the IAP molecule totally abolished the lymphocytosis-promoting activity, but exerted no effects on the epinephrine-hyperglycemia inhibitory activity, of the toxin. Both activities were abolished by acylation of 50% or more of the amino groups probably due to the destruction of the toxin's quarternary structure. In contrast, the subunit assembly of IAP was maintained after exhaustive acetamidination of its lysine residues. The ADP-ribosyltranferase (or NAD-glycohydrolase) activity of the A-protomer (the biggest subunit) of IAP, which is responsible for the principal action of the toxin, enhancing insulin secretory responses and thereby inhibiting epinephrine hyperglycemia, was not affected by acetamidination of lysine residues. Thus, the A-protomer moiety of IAP is not directly involved in, but the amino groups of lysine residues in other subunits are selectively essential for, the development of the toxin-induced lymphocytosis.  相似文献   

11.
Islet-activating protein (IAP), pertussis toxin, is an oligomeric protein composed of an A-protomer and a B-oligomer. There seem to be at least two molecular mechanisms by which IAP exerts its various effects in vivo and in vitro. On the one hand, some of the effects were not significantly affected by acetamidination of the ε-amino groups of the lysine residues in the molecule. These include the activities in vitro (1) catalyzing ADP-ribosylation of one of the membrane proteins directly, (2) enhancing membrane adenylate cyclase activity in C6 cells, (3) reversing receptor-mediated inhibition of insulin or glycerol release from pancreatic islets of adipocytes, respectively, and the activities in vivo (4) inhibiting epinephrine-induced hyperglycemia, (5) potentiating glucose-induced hyperinsulinemia, (6) reducing hypertension and increasing the heart rate in genetically hypertensive rats. These activities are concluded to develop as a result of ADP-ribosylation catalyzed by the A-protomer which is rendered accessible to its intramembrane substrate thanks to the associated B-oligomer moiety. Thus, neither the enzymic activity of the A-protomer nor the transporting activity of the B-oligomer needs free amino groups of the lysine residues in the IAP molecule. On the other hand, additional effects of IAP, such as (1) mitogenic, (2) lymphocytosis-promoting, (3) histamine-sensitizing, (4) adjuvant and (5) vascular permeability increasing, were markedly suppressed by acetamidination of the intrapeptide lysine residues. The free ε-amino group of lysine would play an indispensable role in the firm (or divalent) attachment of the B-oligomer of IAP to the cell surface that is responsible for development of these activities.  相似文献   

12.
R Wang  R M Kini  M C Chung 《Biochemistry》1999,38(23):7584-7593
A novel platelet aggregation inhibitor, rhodocetin, was purified from the crude venom of Calloselasma rhodostoma. It inhibited collagen-induced platelet aggregation in a dose-dependent manner, with an IC50 of 41 nM. Rhodocetin has a heterodimeric structure with alpha and beta subunits, which could be separated on a nonreducing denaturing gel or reverse-phase HPLC column. Individually neither subunit inhibited platelet aggregation even at 2.0 microM concentration. Titration and reconstitution experiments showed that, when these subunits are mixed to give a 1:1 complex, most of its biological activity was recovered. The reconstituted complex inhibited platelet aggregation with an IC50 of 112 nM, about 3-fold less effective than the native molecule. Circular dichroism analysis revealed that the reconstituted complex had a spectrum similar to that of the native protein. By using surface plasmon resonance studies, we established that the stoichiometry of binding between the two subunits is 1:1 and the subunits interact with a Kd of 0.14 +/- 0.04 microM. The complete amino acid sequences of the alpha (15956.16 Da, 133 residues) and beta (15185.10 Da, 129 residues) subunits show a high degree of homology with each other (49%) and with the Ca2+-dependent lectin-related proteins (CLPs) (typically 29-48%) isolated from other snake venoms. Unlike the other members of the family in which the subunits are held together by an interchain disulfide bond, rhodocetin subunits are held together only through noncovalent interactions. The cysteinyl residues forming the intersubunit disulfide bridge in all other known CLPs are replaced by Ser-79 and Arg-75 in the alpha and beta subunits of rhodocetin, respectively. These studies support the noncovalent and synergistic interactions between the two subunits of rhodocetin. This is the first reported CLP dimer with such a novel heterodimeric structure.  相似文献   

13.
Pretreatment of rat cardiac myocytes with the beta-adrenergic agonist, db-cAMP or forskolin decreased ADP-ribosylation of 40-41 kDa protein by islet-activating protein (IAP) in cell membranes. Addition of activated cyclic AMP-dependent protein kinase (protein kinase A) catalytic subunit and MgCl2 also decreased ADP-ribosylation of 40-41 kDa protein by IAP in cell membranes. The alpha- and beta-subunits of partially purified inhibitory GTP-binding protein (Gi) were both phosphorylated by protein kinase A. The amounts of phosphate incorporated into the subunits of Gi were 0.34 and 0.18 mol/mol protein. These show that phosphorylation of Gi by protein kinase A results in a decrease in its ADP-ribosylation by IAP.  相似文献   

14.
The mechanism whereby "islet-activating protein" (IAP) purified from the culture medium of Bordetella pertussis potentiates insulin secretion was studied by experiments in vitro with islets of rats once injected with IAP (0.5 micrograms/100 g body weight, 3 days before killing) or with islets that had been exposed to IAP (0.1 to 100 ng/ml) for 24 h. The IAP treatment markedly enhanced insulin secretory responses and cAMP accumulation in islets, facilitated the efflux of 45Ca through the cell membrane, and abolished the alpha-adrenergic action of epinephrine (and somatostatin) to inhibit glucose-induced insulin release, cAMP accumulation, and 45Ca uptake. These effects of the IAP treatment were reduced when islets were incubated in a low calcium medium. Based on these results, it was concluded that IAP interacts directly but slowly with the islet B cell in such a manner as to render more calcium available to the stimulus-secretion coupling mechanism as a result of sustained activation of native calcium ionophores on the cell membrane.  相似文献   

15.
A GTP-binding protein serving as the specific substrate of islet-activating protein (IAP), pertussis toxin, was partially purified from human leukemic (HL-60) cells that had been differentiated into neutrophil type. The partially purified protein, referred to as GHL, predominantly consisted of at least two polypeptides with molecular masses of 40,000 daltons (alpha) and 36,000 or 35,000 daltons (beta). The structure was similar to Gi or Go previously purified from rat brain as an alpha beta gamma-heterotrimeric IAP substrate (Katada, T., Oinuma, M., and Ui, M. (1986) J. Biol. Chem. 261, 8182-8191), although the existence of the gamma of GHL was unclear. The 40,000-dalton polypeptide contained the site for IAP-catalyzed ADP-ribosylation and the binding site for guanine nucleotide with a high affinity. The 36,000- and 35,000-dalton polypeptides were cross-reacted with the affinity-purified antibody raised against the beta of brain Gi and Go. Limited proteolysis with trypsin and immunoblot analyses with the use of the affinity-purified antibodies raised against the alpha of brain Gi or Go indicated that the alpha of GHL was different from the alpha of Gi or Go. Kinetics of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding to GHL was also quite different from that to brain Gi or Go. Incubation of GHL with GTP gamma S resulted in a resolution into GTP gamma S-bound alpha and beta(gamma) thus purified had abilities to inhibit a membrane-bound adenylate cyclase activity and to associate with the alpha of brain IAP substrate in a fashion similar to the beta gamma of brain IAP substrates, suggesting that there were no significant differences in the biological activities between the beta(gamma) of GHL and those of Gi or Go. Physiological roles of the new GTP-binding protein, GHL, purified from the neutrophil-like cells in receptor-mediated signal transduction are discussed.  相似文献   

16.
The structural bovine eye lens protein alpha-crystallin was dissociated in 7 M urea and its four subunits, A1, A2, B1, and B2, were separated by means of ion-exchange chromatography. Homopolymeric reaggregates of these subunits were prepared by removal of the denaturant via dialysis. It was found that subunits were exchanged upon incubation of mixtures of two homopolymers under native conditions. New hybrid species were formed within 24 h as demonstrated by isoelectric focusing. Moreover, native alpha-crystallin molecules also exchanged subunits when incubated with homopolymeric aggregates of B2 subunits. Subunit exchange between native alpha-crystallin molecules is postulated, and a "dynamic quaternary structure" is presented that allows the polydisperse protein to adapt to changes in cytoplasmic conditions upon aging of the lens tissue.  相似文献   

17.
Immunosuppressive acidic protein (IAP, pI 3.0) is a type of alpha 1-acid glycoprotein (alpha 1-AG). The secretion of IAP into the culture fluids of different subpopulations of human peripheral blood leukocytes was examined by a newly devised passive hemagglutination (PHA)-inhibition test. Human peripheral monocytes, an established monoblastoid cell line (THP-1) and peripheral granulocytes produced IAP. However, neither T nor B lymphocytes, nor lymphoblastoid cell lines induced by TCGF or EB virus respectively, produced IAP. The IAP concentration reached a maximum (215 ng/ml) in the culture fluids of peripheral monocytes (1 X 10(6)/ml) when monocytes were stimulated by the addition of either immune complex, carrageenan or endotoxin. The synthesis de novo and shedding of IAP by THP-1 were demonstrated by the immunoprecipitation of radioactive IAP in the culture fluids of [3H]leucine-labeled cells. SDS-polyacrylamide gel electrophoresis of the immunoprecipitates showed two peaks of radioactivity, one comigrated with authentic IAP at 50,000 daltons, and the other at 38,000 daltons, suggesting that two different forms of IAP (and/or alpha 1-AG) are produced from human monocytes.  相似文献   

18.
19.
T S Samy 《Biochemistry》1977,16(25):5573-5578
The antitumor protein neocarzinostatin (NCS), isolated from Streptomyces carzinostaticus, is a single chain polypeptide with 109 amino acid residues. Complete acylation of the amino groups (alanine-1 and lysine-20) was observed when NCS was allowed to react with 3-(4-hydroxyphenyl)-propionic acid N-hydroxysuccinimide ester at pH 8.5. Since the ensuing bis[(alanine-1, lysine-20)-3-(4-hydroxyphenyl)]-propionamide NCS was fully active in antibacterial potency and in the inhibition of growth of leukemic (CCRF-CEM) cells in vitro, it appears that the two amino groups in the protein are not essential for biological activity. Radiolabeled NCS was prepared by using a tritiated or 125I-labeled acylating agent. Since the CD spectra of native and bis(alanine-1, lysine-20)-amino modified NCS were indistinguishable, there is presumably no change in the native conformation of the protein due to acylation. Reaction of NCS with ammonium chloride in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at pH 4.75 converted all the 10 carboxyl groups into carboxamides and produced a protein derivative of basic character. This modification caused a change in the native conformation of the protein accompanied by a loss in biological inhibitory activities.  相似文献   

20.
Indole-3-acetic acid (IAA) is found in plants in both free and conjugated forms. Within the group of conjugated IAA there is a unique class of proteins and peptides where IAA is attached directly to the polypeptide structure as a prosthetic group. The first gene, IAP1, encoding for a protein with IAA as a prosthetic group, was cloned from bean (Phaseolus vulgaris). It was shown that the expression of IAP1 as a major IAA modified protein in bean seed (PvIAP1) was correlated to a developmental period of rapid growth during seed development. Moreover, this protein underwent rapid degradation during germination. Since further molecular analysis was difficult in bean, the IAP1 gene was transformed into Arabidopsis thaliana and Medicago truncatula. Expression of the bean IAP1 gene in both plant species under the control of its native promoter targeted protein expression to the seeds. In Arabidopsis no IAA was found to be attached to PvIAP1. These results show that there is specificity to protein modification by IAA and suggests that protein conjugation may be catalyzed by species specific enzymes. Furthermore, subcellular localization showed that in Arabidopsis PvIAP1 was predominantly associated with the microsomal fraction. In addition, a related protein and several smaller peptides that are conjugated to IAA were identified in Arabidopsis. Further research on this novel class of proteins from Arabidopsis will both advance our knowledge of IAA proteins and explore aspects of auxin homeostasis that were not fully revealed by studies of free IAA and lower molecular weight conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号