首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid incorporation directed by poly(A), poly(U) or R17 RNA has been examined in S1-depleted protein synthesizing systems. We observe that the translation of either synthetic or natural messenger RNA is strictly dependent on the presence of chain initiation factor 3 and ribosomal protein S1. With poly(A) or poly(U) both IF-3 and S1 stimulate amino acid incorporation at least 25-fold, and with R17 RNA the stimulation is approximately 15-fold. More than one copy of S1 per ribosome decreases amino acid incorporation directed by poly(U) or R17 RNA. Initiation complex formation with R17 RNA is also stimulated optimally by the addition of one copy of S1 per ribosome. The function of IF-3 and S1 in protein synthesis is considered.  相似文献   

2.
P Londei  S Altamura  E Caprini  A Martayan 《Biochimie》1991,73(12):1465-1472
Several features of translation and ribosome structure in extremely thermophilic, sulfur-dependent archaebacteria are described, including: i) a peculiar mechanism of transfer RNA-mediated 70S ribosome formation from free subunits; ii) poly(U)translation by hybrid ribosomes composed by one archaebacterial and one eucaryotic subunit; iii) ribosome assembly and homologous and heterologous RNA/protein recognition.  相似文献   

3.
Picornavirus infectivity is dependent on the RNA poly(A) tail, which binds the poly(A) binding protein (PABP). PABP was reported to stimulate viral translation and RNA synthesis. Here, we studied encephalomyocarditis virus (EMCV) and poliovirus (PV) genome expression in Krebs-2 and HeLa cell-free extracts that were drastically depleted of PABP (96%-99%). Although PABP depletion markedly diminished EMCV and PV internal ribosome entry site (IRES)-mediated translation of a polyadenylated luciferase mRNA, it displayed either no (EMCV) or slight (PV) deleterious effect on the translation of the full-length viral RNAs. Moreover, PABP-depleted extracts were fully competent in supporting EMCV and PV RNA replication and virus assembly. In contrast, removing the poly(A) tail from EMCV RNA dramatically reduced RNA synthesis and virus yields in cell-free reactions. The advantage conferred by the poly(A) tail to EMCV synthesis was more pronounced in untreated than in nuclease-treated extract, indicating that endogenous cellular mRNAs compete with the viral RNA for a component(s) of the RNA replication machinery. These results suggest that the poly(A) tail functions in picornavirus replication largely independent of PABP.  相似文献   

4.
The effect of Escherichia coli ribosomal protein S1 on translation has been studied in S1-depleted systems programmed with poly(U), poly(A) and MS2 RNA3. The translation of the phage RNA depends strictly on the presence of S1. Optimum poly(U)-directed polyphenylalanine synthesis and poly(A)-programmed polylysine synthesis also require S1. Excess S1 relative to ribosomes and messenger RNA results in inhibition of translation of MS2 RNA and poly(U), but not of poly (A). In the case of phage RNA translation, this inhibition can be counteracted by increasing the amount of messenger RNA. Three other 30 S ribosomal proteins (S3, S14 and S21) are also shown to inhibit MS2 RNA translation. The effects of S1 on poly(U) translation were studied in detail and shown to be very complex. The concentration of Mg2+ in the assay mixtures and the ratio of S1 relative to ribosomes and poly(U) are crucial factors determining the response of this translational system towards the addition of S1. The results of this study are discussed in relation to recent developments concerning the function of this protein.  相似文献   

5.
30S ribosomal protein S4 contains a single cysteine residue at position 31. We have selectively cleaved the peptide bond adjacent to this residue using the reagent 2-nitro-5-thiocyanobenzoic acid. The two resultant fragments were purified. The smaller S4-fragment (1-30) was found to be incapable of interacting with 16S RNA directly. This fragment also is not incorporated into a particle reconstituted from 16S RNA and 20 purified proteins with S4 missing. In contrast, the large S4-fragment (31-203) appears to be fully functional in ribosome assembly. Replacement of S4 with this fragment in the reconstitution reaction leads to a complete 30S ribosome containing all 30S proteins. This particle has a full capacity to bind poly U but has lost all activity for poly U directed phe-tRNA binding. We therefore propose that the N-terminus of protein S4 is not critical for ribosome assembly but is essential for tRNA binding.  相似文献   

6.
7.
Escherichia coli signal recognition particle (SRP) consists of 4.5S RNA and Ffh protein. In contrast to eukaryotes, it remains unclear whether translation arrest takes place in prokaryotic cells. To study this problem we constructed a fusion of the M domain of Ffh protein with a cleavable affinity tag. This mutant Ffh, in a complex with 4.5S RNA, can bind signal peptide at the translating ribosome but is unable to bind the membrane. This SRP-ribosome complex should accumulate in the cell if translation is arrested. To test this, the complex was purified from the cells by ultracentrifugation and affinity chromatography. The composition of the complex was analyzed and found to consist of ribosomal RNAs and proteins, the Ffh M domain and 4.5S RNA. The accumulation of this complex in the cell in significant amounts indicated that SRP-mediated translation arrest did occur in bacterial cells.  相似文献   

8.
Eukaryotic mRNAs possess a poly(A) tail that enhances translation via the (7)mGpppN cap structure or internal ribosome entry sequences (IRESs). Here we address the question of how cellular IRESs recruit the ribosome and how recruitment is augmented by the poly(A) tail. We show that the poly(A) tail enhances 48S complex assembly by the c-myc IRES. Remarkably, this process is independent of the poly(A) binding protein (PABP). Purification of native 48S initiation complexes assembled on c-myc IRES mRNAs and quantitative label-free analysis by liquid chromatography and mass spectrometry directly identify eIFs 2, 3, 4A, 4B, 4GI, and 5 as components of the c-myc IRES 48S initiation complex. Our results demonstrate for the first time that the poly(A) tail augments the initiation step of cellular IRES-driven translation and implicate a distinct subset of translation initiation factors in this process. The mechanistic distinctions from cap-dependent translation may allow specific translational control of the c-myc mRNA and possibly other cellular mRNAs that initiate translation via IRESs.  相似文献   

9.
In current views, translation-coupled ribosome binding to the endoplasmic reticulum (ER) membrane is transient, with association occurring via the signal recognition particle pathway and dissociation occurring upon the termination of protein synthesis. Recent studies indicate, however, that ribosomal subunits remain membrane-bound following the termination of protein synthesis. To define the mechanism of post-termination ribosome association with the ER membrane, membrane-bound ribosomes were detergent-solubilized from tissue culture cells at different stages of the protein synthesis cycle, and the composition of the ribosome-associated membrane protein fraction was determined. We report that ribosomes reside in stable association with the Sec61alpha-translocon following the termination stage of protein synthesis. Additionally, in vitro experiments revealed that solubilized, gradient-purified ribosome-translocon complexes were able to initiate the translation of secretory and cytosolic proteins and were functional in assays of signal sequence recognition. Using this experimental system, synthesis of signal sequence-bearing polypeptides yielded a tight ribosome-translocon junction; synthesis of nascent polypeptides lacking a signal sequence resulted in a disruption of this junction. On the basis of these data, we propose that in situ, ribosomes reside in association with the translocon throughout the cycle of protein synthesis, with membrane release occurring upon translation of proteins lacking topogenic signals.  相似文献   

10.
Various RNA fractions were isolated from nuclei of 12-day lactating rat mammary glands and examined for their ability to inhibit cell-free protein synthesis. Although total nuclear RNA was generally inactive, material contained in the poly(A)+ nuclear RNA fraction and the low-molecular-weight RNA derived from total nuclear RNA by sucrose gradient centrifugation, inhibited the translation of several mRNAs but not poly(U) or poly(A). Separation of the small nuclear RNAs by preparative polyacrylamide-urea gel electrophoresis allowed the identification of at least three active inhibitor RNA species. These differed both with respect to their ability to inhibit protein synthesis, and in their mechanism of action. While two of the RNA species inhibited elongation the other inhibited initiation of protein synthesis.  相似文献   

11.
In current models, protein translocation in the endoplasmic reticulum (ER) occurs in the context of two cycles, the signal recognition particle (SRP) cycle and the ribosome cycle. Both SRP and ribosomes bind to the ER membrane as a consequence of the targeting process of translocation. Whereas SRP release from the ER membrane is regulated by the GTPase activities of SRP and the SRP receptor, ribosome release from the ER membrane is thought to occur in response to the termination of protein synthesis. We report that ER-bound ribosomes remain membrane-bound following the termination of protein synthesis and in the bound state can initiate the translation of secretory and cytoplasmic proteins. Two principal observations are reported. 1) Membrane-bound ribosomes engaged in the synthesis of proteins lacking a signal sequence are released from the ER membrane as ribosome-nascent polypeptide complexes. 2) Membrane-bound ribosomes translating secretory proteins can access the translocon in an SRP receptor-independent manner. We propose that ribosome release from the ER membrane occurs in the context of protein translation, with release occurring by default in the absence of productive nascent polypeptide-membrane interactions.  相似文献   

12.
Various RNA fractions were isolated from nuclei of 12-day lactating rat mammary glands and examined for their ability to inhibit cell-free protein synthesis. Although total nuclear RNA was generally inactive, material contained in the poly(A)+ nuclear RNA fraction and the low-molecular-weight RNA derived from total nuclear RNA by sucrose gradient centrifugation, inhibited the translation of several mRNAs but not poly(U) or poly(A). Separation of the small nuclear RNAs by preparative polyacrylamide-urea gel electrophoresis allowed the identification of at least three active inhibitor RNA species. These differed both with respect to their ability to inhibit protein synthesis, and in their mechanism of action. While two of the RNA species inhibited elongation the other inhibited initiation of protein synthesis.  相似文献   

13.
The ribosome is the macromolecular machine responsible for translating the genetic code into polypeptide chains. Despite impressive structural and kinetic studies of the translation process, a number of challenges remain with respect to understanding the dynamic properties of the translation apparatus. Single-molecule techniques hold the potential of characterizing the structural and mechanical properties of macromolecules during their functional cycles in real time. These techniques often necessitate the specific coupling of biologically active molecules to a surface. Here, we describe a procedure for such coupling of functionally active ribosomes that permits single-molecule studies of protein synthesis. Oxidation with NaIO4 at the 3' end of 23S rRNA and subsequent reaction with a biotin hydrazide produces biotinylated 70S ribosomes, which can be immobilized on a streptavidin-coated surface. The surface-attached ribosomes are fully active in poly(U) translation in vitro, synthesizing poly(Phe) at a rate of 3-6 peptide bonds/s per active ribosome at 37 degrees C. Specificity of binding of biotinylated ribosomes to a streptavidin-coated quartz surface was confirmed by observation of individual fluorescently labeled, biotinylated 70S ribosomes, using total internal reflection fluorescence microscopy. Functional interactions of the immobilized ribosomes with various components of the protein synthesis apparatus are shown by use of surface plasmon resonance.  相似文献   

14.
15.
16.
17.
4.5S RNA is essential for viability of Escherichia coli, and forms a key component of the signal recognition particle (SRP), a ubiquitous ribonucleoprotein complex responsible for cotranslational targeting of secretory proteins. 4.5S RNA also binds independently to elongation factor G (EF-G), a five-domain GTPase that catalyzes the translocation step during protein biosynthesis on the ribosome. Point mutations in EF-G suppress deleterious effects of 4.5S RNA depletion, as do mutations in the EF-G binding site within ribosomal RNA, suggesting that 4.5S RNA might play a critical role in ribosome function in addition to its role in SRP. Here we show that 4.5S RNA and EF-G form a phylogenetically conserved, low-affinity but highly specific complex involving sequence elements required for 4.5S binding to its cognate SRP protein, Ffh. Mutational analysis indicates that the same molecular structure of 4.5S RNA is recognized in each case. Surprisingly, however, the suppressor mutant forms of EF-G bind very weakly or undetectably to 4.5S RNA, implying that cells can survive 4.5S RNA depletion by decreasing the affinity between 4.5S RNA and the translational machinery. These data suggest that SRP function is the essential role of 4.5S RNA in bacteria.  相似文献   

18.
The effect of 30S ribosomal protein S1 on poly(U)-directed polyphenylalanine synthesis was studied using a highly purified cell-free system which was devoid of endogenous S1. The system consisted of homogeneous preparations of EF-Tu, EF-Ts, and EF-G, and 70S ribosomes from which protein S1 had been removed by poly(U)-cellulose column chromatography. It was found that protein S1 was indispensable for translation of poly(U) by an S1-depleted system at low concentrations of poly(U). On the other hand, at higher concentrations of poly(U), a considerable amount of polyphenylalanine was synthesized in the absence of added S1. The stimulatory effect of S1 was observed at all Mg2+ concentrations examined but was most pronounced at 10 mM Mg2+. Some physicochemical properties of the protein were also studied. It was demonstrated that the protein has an elongated shape with an axial ratio of approximately 8.5.  相似文献   

19.
The conserved RNA binding protein La recognizes UUU-3'OH on its small nuclear RNA ligands and stabilizes them against 3'-end-mediated decay. We report that newly described La-related protein 4 (LARP4) is a factor that can bind poly(A) RNA and interact with poly(A) binding protein (PABP). Yeast two-hybrid analysis and reciprocal immunoprecipitations (IPs) from HeLa cells revealed that LARP4 interacts with RACK1, a 40S ribosome- and mRNA-associated protein. LARP4 cosediments with 40S ribosome subunits and polyribosomes, and its knockdown decreases translation. Mutagenesis of the RNA binding or PABP interaction motifs decrease LARP4 association with polysomes. Several translation and mRNA metabolism-related proteins use a PAM2 sequence containing a critical invariant phenylalanine to make direct contact with the MLLE domain of PABP, and their competition for the MLLE is thought to regulate mRNA homeostasis. Unlike all ~150 previously analyzed PAM2 sequences, LARP4 contains a variant PAM2 (PAM2w) with tryptophan in place of the phenylalanine. Binding and nuclear magnetic resonance (NMR) studies have shown that a peptide representing LARP4 PAM2w interacts with the MLLE of PABP within the affinity range measured for other PAM2 motif peptides. A cocrystal of PABC bound to LARP4 PAM2w shows tryptophan in the pocket in PABC-MLLE otherwise occupied by phenylalanine. We present evidence that LARP4 expression stimulates luciferase reporter activity by promoting mRNA stability, as shown by mRNA decay analysis of luciferase and cellular mRNAs. We propose that LARP4 activity is integrated with other PAM2 protein activities by PABP as part of mRNA homeostasis.  相似文献   

20.
A regulated shift from the production of membrane to secretory forms of Immunoglobulin M (IgM) mRNA occurs during B cell differentiation due to the activation of an upstream secretory poly(A) site. U1A plays a key role in inhibiting the expression of the secretory poly(A) site by inhibiting both cleavage at the poly(A) site and subsequent poly(A) tail addition. However, how the inhibitory effect of U1A is alleviated in differentiated cells, which express the secretory poly(A) site, is not known. Using B cell lines representing different stages of B cell differentiation, we show that the amount of U1A available to inhibit the secretory poly(A) site is reduced in differentiated cells. Undifferentiated B cells have more total U1A than differentiated cells and a greater proportion of this is not associated with the U1snRNP. We show that this is available to inhibit poly(A) addition at the secretory poly(A) site using cold competitor RNA oligos to de-repress poly(A) addition in nuclear extracts from the respective cell lines. In addition, endogenous non-snRNP associated U1A-immunopurified from the different cell lines-inhibits poly(A) polymerase activity proportional to U1A recovered, suggesting that available U1A level alone is responsible for changes in its inhibitory effect at the secretory IgM poly (A) site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号