首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daphnia can alter its vertical position in the water column in response to chemical cues from predators. In this study we tested the hypothesis that a Daphnia pulex clone with little evolutionary exposure to cyanobacteria would move away from patches of cyanobacteria (Anabaena affinis and A. flos-aquae) which contain potent endotoxins. Daphnia was censused at 2 h intervals for 6 h in laboratory columns in which there was a steep vertical gradient of cyanobacteria. Data were analyzed by repeated-measures ANOVA. Control (no Anabaena) and experimental columns showed no significant differences in Daphnia distributions. Daphnia in experimental columns frequently moved into areas with dense concentrations of Anabaena and stayed there for long periods of time. Our results show that this D. pulex clone does not exhibit a rapid (within 6 h) avoidance response to toxic Anabaena.  相似文献   

2.
The distribution of Daphniaspecies in tropical Africa is poorly known and understood. Daphniaare assumed rare in tropical regions, but systematic studies covering large areas are sparse. We sampled the active community (live zooplankton) and/or the dormant community (diapausing egg banks in the sediment) of 41 standing water bodies in Kenya in search for Daphnia.Overall the dormant communities yielded 11 species of Daphnia, a species richness more than twice the species richness found in the active communities. Dormant community species diversity better reflects the spatial, and particularly the temporal (multi-annual) variation in environmental conditions available to Daphniain these tropical standing waters. Hence, we suggest that the dormant community be taken into account when assessing local zooplankton diversity, especially in fluctuating tropical lake ecosystems, where the presence of each local Daphniaspecies in the active community may be strongly seasonal or erratic. Geographic distribution data from this study are supplemented with previous records of Daphniain East Africa to provide an overview of the known distribution of Daphniain Kenya and neighbouring countries. We also present a detailed key for morphological identification of the ephippia of the 11 Daphniaspecies encountered, complemented with photographs and drawings of diagnostic characters.  相似文献   

3.
The effects of chemicals released by fish and Chaoborus larvae on some life history traits in Daphnia pulex were studied in an in situ enclosure experiment. The mean size of Daphnia individuals was smaller in the presence of fish-released cues. Also the minimal size of an egg bearing female in the presence of fish exudates was smaller than in the population exposed to the chemicals released by Chaoborus larvae as well as in the control population. Fish-released chemicals caused the increase in clutch size in Daphnia. There were no statistically significant differences between the studied life history parameters of the control and Chaoborus treatments. The results are discussed in reference to recent laboratory research.  相似文献   

4.
We investigated the life history alterations of coexisting Daphnia species responding to environmental temperature and predator cues. In a laboratory experiment, we measured Daphnia life history plasticity under different predation risk and temperature treatments that simulate changing environmental conditions. Daphnia pulicaria abundance and size at first reproduction (SFR) declined, while ephippia (resting egg) formation increased at high temperatures. Daphnia mendotae abundance and clutch size increased with predation risk at high temperatures, but produced few ephippia. Thus, each species exhibited phenotypic plasticity, but responded in sharply different ways to the same environmental cues. In Glen Elder reservoir, Kansas USA, D. pulicaria dominance shifted to D. mendotae dominance as temperature and predation risk increased from March to June in both 1999 and 2000. Field estimates of life history shifts mirrored the laboratory experiment results, suggesting that similar phenotypic responses to seasonal cues contribute to seasonal Daphnia population trends. These results illustrate species-specific differences in life history plasticity among coexisting zooplankton taxa.  相似文献   

5.
Alison Sartonov 《Hydrobiologia》1995,307(1-3):117-126
Laboratory experiments tested the hypothesis that a toxic strain of Microcystis aeruginosa decreases the ability of Daphnia pulex to interfere with Keratella cochlearis. To test a variety of conditions, juvenile and adult Daphnia were exposed to the cyanobacterium for different time periods prior to, and during the experiments. Adult Daphnia not only suppressed rotifers over successive two-day intervals, but also had a significant impact within a 24-hour period. However, the presence of Microcystis (5 × 105 cells ml–1) decreased the Daphnia effect in both experiments. Although juvenile Daphnia also significantly suppressed Keratella population growth, the presence of Microcystis (105 and 5 × 105 cells ml–1) caused a significant reduction in daphniid body size and decreased the ability of both nonacclimated and acclimated daphniids to suppress rotifers. Keratella inhalation and mortality are positively correlated with filtering rates and body size of Daphnia. Therefore, the feeding rates and size structure of a Daphnia population will determine its potential to interfere with vulnerable rotifers. In all experiments the presence of Microcystis significantly decreased the ability of Daphnia to interfere with this rotifer despite the fact that Keratella was also inhibited. In the field this effect might be augmented if Microcystis colonies are more easily ingested by cladocerans than by the rotifers.  相似文献   

6.
Summary Numerous adaptive predator-induced responses occurred when eight clones representing seven Daphnia (Crustacea: Cladocera) species were tested against three common predators: fourth instar larval phantom midge Chaoborus americanus, adult backswimmer Notonecta undulata, and small sunfish Lepomis macrochirus. The predators were confined within small mesh bags, suggesting that the signal for induction is chemical. The induced responses included longer tail spines, longer heads, smaller bodies, increased egg clutches, and decreased lipid reserves. Each Daphnia species responded to each of the three predators in a unique manner. Induced responses in the above characters showed no significant association. The induced morphological changes are generally consistent with current theories of what is an adaptive response for the various sizes of Daphnia exposed to tactile and visual predators. The abundance of induced responses in these experiments suggests that predator-induced responses are a widespread and ecologically important phenomenon of the freshwater zooplankton.  相似文献   

7.
Schwenk  Klaus  Bijl  Maartje  Menken  Steph B. J. 《Hydrobiologia》2001,442(1-3):67-73
Hybridization is a common phenomenon in Daphnia (Cladocera; Anomopoda); interspecific hybrids have been found between several species and hybrids are found in many European lakes. Although much information on the morphology, ecology and genetics of hybrids is available, little is known about the level of reproductive isolation among species or about the relative fitness of hybrids and parental species. In order to facilitate studies on differentiation and speciation processes and comparative experimental studies on hybrids and recombinant genotypes, we present the first successful laboratory crossing experiments of two different Daphnia species, D. galeata and D. cucullata. Males and sexual females from two D. galeata and two D. cucullata clones were reciprocally crossed, juveniles hatched from resting eggs and reared until maturity. Hatching and juvenile survival rates of hybrids were relatively low (12.1% and 24%, respectively). D. galeata and D. cucullata clones vary in their level of successful interspecific matings and in the number of subsequent offspring. In general, hybrid crosses between D. cucullata females and D. galeata males were more successful than reciprocal crosses.  相似文献   

8.
Size-selective predation by fish is often considered to be a primary driver of seasonal declines in large-bodied Daphnia populations. However, large Daphnia commonly exhibit midsummer extinctions in ponds lacking planktivorous fish. A number of empirical and theoretical studies suggest that resource competition and its interaction with nutrient enrichment may determine variable dominance by large Daphnia. Low resource levels may favor competitive dominance by small-bodied taxa while large Daphnia may be favored under high resource conditions or following a nutrient/productivity pulse. Nutrient enrichment may also influence the strength of invertebrate predation on Daphnia by affecting how long vulnerable juveniles are exposed to predation. We investigated these hypotheses using an in situ mesocosm experiment in a permanent fishless pond that exhibited seasonal losses of Daphnia pulex. To explore the effects of nutrient enrichment, Daphnia plus a diverse assemblage of small-bodied zooplankton were exposed to three levels of enrichment (low, medium, and high). To explore the interaction between nutrient enrichment and invertebrate predation, we crossed the presence/absence of Notonecta undulata with low and high nutrient manipulations. We found no evidence of competitive reversals or shifts in dominance among nutrient levels, Daphnia performed poorly regardless of enrichment. This may have been due to shifts in algal composition to dominance by large filamentous green algae. Notonecta had significant negative effects on Daphnia alone, but no interaction with nutrient enrichment was detected. These results suggest that Daphnia are not invariably superior resource competitors compared to small taxa. Though predators can have negative effects, their presence is not necessary to explain poor Daphnia performance. Rather, abiotic conditions and/or resource-based effects are probably of greater importance.  相似文献   

9.
10.
We studied the egg banks of Daphnia gr. longispina in four acidified lakes in the Bohemian Forest (Czech Republic, Europe). Daphnia had become extinct in three of the studied lakes due to anthropogenic acidification and we assessed the possibility of autochthonous recovery of the population after recent amelioration of the lake environment. We determined the ephippia distribution in eleven cores 10–30 cm long, and the state of Daphnia resting eggs in over 13 000 ephippia from eight cores. Apparently well-preserved eggs were used for hatching experiments and for DNA amplification. Vertical profiles of ephippia densities in several cores did not agree with historical data on the Daphnia presence in the lakes, as the sediment had been repeatedly disturbed by human activities in the past. Ephippia are present near the surface of the sediment in all lakes, and they might therefore receive hatching cues. We were not able, however, to prove that viable eggs are present in the ephippia banks of the lakes. The percentage of the well-preserved eggs in all but one core was below 1%. In addition, no egg hatched in the hatching experiments and we were not able to amplify DNA from the preserved eggs of lakes where Daphnia is extinct, although amplification from relatively young eggs from the fourth lake was successful in 60% of the cases. We conclude that the recovery of Daphnia populations in studied lakes from autochthonous sources is unlikely.  相似文献   

11.
To investigate the role of helmet formation in defense against predation, laboratory experiments were used to analyze the effects of morphological changes in Daphnia on susceptibility to Chaoborus predation. Behavioral observations of Chaoborus preying on helmeted and non-helmeted Daphnia suggest pre-contact advantages for helmeted prey but post-contact advantages for non-helmeted prey. Helmeted Daphnia are better at evading capture by Chaoborus but may also be more easily handled by the predator. Swimming behavior of the prey, which is influenced by the presence of a tailspine, may affect Chaoborus strike distance. These results re-emphasize the potential hydromechanical importance of body shape changes in defense against predation.  相似文献   

12.
Kin recognition in Bufo scaber tadpoles: ontogenetic changes and mechanism   总被引:1,自引:0,他引:1  
Ontogenetic changes in kin-recognition behavior, effect of social environment on kin-recognition ability, and use of visual and chemical cues in kin recognition have been studied in tadpoles of Bufo scaber after rearing them with kin, in mixed groups, or in isolation from Gosner stage 12 (gastrula). By use of a rectangular choice tank the tadpoles were tested for their ability to choose between (a) familiar siblings and unfamiliar non-siblings, (b) unfamiliar siblings and familiar non-siblings, and (c) unfamiliar siblings and unfamiliar non-siblings. When tested without any stimulus groups in the end compartments of the tank, random distribution was observed for the tadpoles and no bias for the apparatus or the procedure. In the presence of kin and non-kin in the end compartments, significantly more tadpoles spent most of their time near kin (familiar or unfamiliar) rather than near non-kin during early larval stages, up to stage 37. After stage 37 (characterized by the differentiation of toes), test tadpoles showed no preference to associate with kin, suggesting an ontogenetic shift in the kin-recognition ability in B. scaber. In experiments involving selective blockade of visual or chemical cues the test tadpoles preferentially associated near their kin on the basis of chemical rather than visual cues. These findings suggest that familiarity with siblings is not necessary for kin recognition and that kin-recognition ability is not modified after exposure to non-kin by mixed rearing. The findings for B. scaber indicate a self referent phenotype matching mechanism of kin recognition which is predominantly aided by chemical rather than visual cues.  相似文献   

13.
Although chemical alarm substances from damaged heterospecifics have been well documented to induce defense mechanisms in potential prey, data about antipredator responses to alarm cues from prey organisms of a distinct phylum are scarce. In this study, we analyze the response of an oligochaete to chemical alarm substances from distantly related cladocerans. We conducted laboratory experiments to investigate whether the aquatic oligochaete Stylaria lacustris detects and responds to alarm substances from Daphnia. The oligochaetes were exposed to alarm substances from Daphnia magna, which is a member of the same prey guild, and D. hyalina, which is vulnerable to different predators. S. lacustris increased the fission rate in response to cues from conspecifics and the heterospecific D. magna. These species share common predators, especially damselfly larvae and hydras. In contrast, chemical cues released from D. hyalina did not induce an increase in the reproductive rate of the oligochaetes. D. hyalina is a pelagic species and is not included in the diet of predators preying upon S. lacustris. Our results indicate cross-phyla responses among invertebrates (Annelida and Arthropoda), and suggest strong selection pressures to respond to heterospecific alarm substances. The oligochaete S. lacustris is able to differentiate chemical substances released from damaged Daphnia of two different species. These results show that alarm cues released from damaged Daphnia may be species-specific. However, further studies on the chemical structure of alarm substances in cladocerans are needed to support this hypothesis.  相似文献   

14.
L&#;rling  Miquel  Verschoor  Antonie M. 《Hydrobiologia》2003,491(1-3):145-157
In the PHYTO-PAM phytoplankton analyzer the minimal fluorescence of dark-adapted samples (F0) was assessed, which gives direct information on the chlorophyll-a content. Clearance rates (CR) of Daphnia and Brachionus were calculated from a decrease in chlorophyll-a concentration using the PHYTO-PAM fluorometer for non-sacrificial sampling of chlorophyll-a. Clearance rates of Daphnia were measured and compared with those based on the cell-counts method using an electronic particle counter (Coulter counter). Chlorophyll fluorescence-based CR for Daphnia magna were very strongly correlated with Coulter-based CR, signifying the potential suitability of the PHYTO-PAM in grazing experiments. A procedure for determination of rotifer clearance rates was developed and the effects of rotifer density, duration of the grazing period, and food concentration on CR were investigated. Between 10 and 30 rotifers in 2.5 ml food suspension (i.e. 4–12 rotifers per ml) appeared optimal for calculating CR. The application of the deconvolution of F0-spectra in food selectivity experiments was evaluated using various mixtures of the green alga Scenedesmus obliquus and the cyanobacterium Microcystis aeruginosa fed to Brachionus. CR for Brachionus on M. aeruginosawere lower than on S. obliquusbut this was not caused by toxicity, because no mortality was observed. The higher CR on Scenedesmus than on Microcystis in the mixtures suggested selectivity. The importance of digital suppression of background fluorescence is highlighted in additional experiments with Daphnia feeding on mixtures of Microcystis and Scenedesmus, or on Microcystis alone. Without background correction of filtered samples, negative clearance rates were obtained for the `blue' Microcystis signal. Soluble fluorescing compounds of cyanobacterial origin, phycocyanin, were released from the Daphniaand contributed 40% to the overall-fluorescence. Deconvolution of F0-spectra for the determination of chlorophyll-a using the PHYTO-PAM appears to be a suitable tool for determination of rotifer CR even at very low food concentrations. A drawback of the method is that rather high rotifer densities are required. The required grazing period, however, is shorter than for cell-count methods, the method is sensitive, clearance rates can be measured at low food concentrations (< 0.1 mg C l–1) and information on selective feeding can be obtained.  相似文献   

15.
We examined the ability of the amphipod Gammarus pulexto detect chemical cues released from potential food sources. Therefore, response of G. pulex to chemical cues from food was tested in paired-choice laboratory experiments. Comparisons were made between artificial and natural leaves, with and without the importance of aufwuchs, and with different components of the aufwuchs community. Our study demonstrated that G. pulex actively chose its food and that G. pulex is most strongly attracted to the aufwuchs on discs rather than to the leaf itself. Fungi and bacteria are more important in the food selection process than algae probably because fungal and bacterial cues are more specific cues for decaying leaves than algal cues, since algae also grow on mineral substrates and then do not contribute to leaf decomposition.  相似文献   

16.
We cultured individuals of two Daphnia species and their hybrid on two different algae, Scenedesmus obliquus and Chlamydomonas globosa, in different concentrations. Our results suggest that culture conditions of S. obliquus can be such that the algal cells become toxic to Daphnia  相似文献   

17.
Empirical models based on zooplankton biomass were used to predict mean summer chlorophyll a (Chl a) and to examine how zooplankton influenced the total phosphorus (TP) - Chl a relationship. Four years of data were analyzed for three lakes having similar TP concentrations but varied abundances of Daphnia and Ceriodaphnia. Mean TP did not correlate significantly with mean Chl a during the study period, although mean Daphnia density was a good predictor of Chl a concentration (p > 0.001). Both residuals from the TP - Chl a relationship (p > 0.001) and Secchi depth (p > 0.007) were negatively correlated with Daphnia abundance. Ceriodaphnia abundance was positively correlated with Chl a (p > 0.002) and Secchi depth (p > 0.001). Mean size of Daphnia during spring was the best predictor of the Daphnia-Ceriodaphnia shift in mid-summer. Early establishment of a large-sized Daphnia cohort may prevent their summer elimination by Chaoborus and intensify competition with Ceriodaphnia. These results imply an important link between Daphnia and Ceriodaphnia thereby limiting the utility of Chl a - TP model predictions in these small, urban lakes. This linkage and the differential effect of these two zooplankton species on planktonic algae deserve further consideration in similar lakes where phytoplankton and zooplankton tend to be tightly coupled.  相似文献   

18.
Tumor initiation of different dicotyledonous plant species inoculated with Agrobacterium tumefaciens B6 has been studied in vivo and in vitro. The tumor formation in weakly susceptible plants can be strongly enhanced by exogenously applied active extract fractions derived from highly susceptible Helianthus cotyledons. It is found that highly susceptible plants (Kalanchoë, Lycopersicon and Pinto beans) contain an active tumor initiation enhancer which is clearly similar to the compound(s) found in Helianthus cotyledons. No activity can be detected in extracts derived from weakly susceptible plants (Coleus, Phaseolus) or in those obtained from crown-gall tumor tissues.Abbreviations HS high susceptibility for tumor initiation - LS low susceptibility for tumor initiation - PEF purified active extract fraction  相似文献   

19.
Summary Life table experiments were conducted on the generalist suspension feeder Daphnia galeata, using as food the two green algae (Chlorophyta) Scenedesmus acutus and Oocystis lacustris. Oocystis was hypothesized to be a lower quality food because it is convered with a thick sheath, believed to reduce digestibility. Results showed that Oocystis is a lower quality food for Daphnia, but only at relatively low food concentrations (0.15 mg C/L) and not at higher concentrations (1.0 mg C/L). At 0.15 mg C/L, Daphnia intrinsic rate of increase (r) when grown on Oocystis was only half that when grown on Scenedesmus. Daphnia r was similar at 0.15 mg C/L Oocystis and 0.075 mg C/L Scenedesmus, indicating that Daphnia requires twice as much Oocystis as Scenedesmus to achieve the same fitness. Intrinsic rate of increase was lower on Oocystis mainly because age at first reproduction was greatly delayed compared to that on Scenedesmus (13.6 vs 7.3 d). In addition, juvenile growth and survivorship were reduced on Oocystis compared with Scenedesmus. Clutch sizes were similar on the two foods, indicating that once individuals reached adulthood, the two foods were similar in quality. In contrast, at high food concentrations (1.0 mg C/L), the two algae were similar in quality for both juveniles and adults, and r was not significantly different on the two foods. Ingestion and assimilation rate experiments whowed that Daphnia consumes the two algae at identical rates, and that adults assimilate the two algae at similar rates. However, juveniles assimilate Oocystis at much lower rates than Scenedesmus, possibly accounting for reduced juvenile growth and delay in age at maturity at low concentrations. Thus, Daphnia exhibits an ontogenetic shift in its ability to utilize Oocystis, and this can result in juvenile bottlenecks in which survival and growth of young age classes are of critical importance in determining population dynamics. Because food quality effects were manifested primarily in juveniles and at low concentrations, food quality effects in nature will depend on phytoplankton abundance and age-structure of Daphnia populations.  相似文献   

20.
Functional response curves of fourth instar larvae ofChaoborus flavicans preying on two size classes ofDaphnia longispina were examined throughout three summer seasons in a small forest lake. Data for each size class were fitted to Holling's disc equation. The parametersa (attack rate) andTh (handling time) were calculated for each prey size from these curves. Attack rate was greater and handling time was shorter for small (0.77 mm) than for large (1.82 mm)Daphnia. In 1:1 mixture of these prey size classes the predation rates ofChaoborus on smallDaphnia at prey densities above 20 l–1 were greater than predicted from the single size-class experiments. The observed predation rates on largeDaphnia were lower than predicted at all prey densities. Since both single size-class and two size-class experiments were run during the same period of time the difference in observed and predicted predation rates could not be attributed to seasonal changes in prey preference ofChaoborus larvae. In experiments with a concentrated mixture of lake zooplankton (dominated byD. longispina)Chaoborus preference forDaphnia decreased as prey body size increased. There was no obvious correlation between selectivity coefficients and size-frequency distributions ofDaphnia. When medium-sizedDaphnia were omitted from calculations the preference of small over large prey did not differ significantly from the predictions of the single size-class model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号