首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In suspensions of the green alga Chlorella fusca the influence of high pH and high ethylene-diamine-tetraacetic acid concentrations in the external medium, of French-press and perchloric acid extraction of the cells and of alkalization of the intracellular pH on the polyphosphate signal in 31P-nuclear magnetic resonance (31P NMR) spectra was investigated.The results show that part of the polyphosphates of asynchronous Chlorella cells are located outside the cytoplasmic membrane and complexed with divalent metal-ions. These polyphosphates are tightly bound to the cell wall and/or the cytoplasmic membrane and are not susceptible to hydrolyzation by strong acid at room temperature, in contrast to the intracytoplasmic polyphosphates.Upon alkalization of the internal pH of Chlorella cells, polyphosphates, previously not visible in the spectra become detectable by 31P-NMR-spectroscopy. 31P-NMR spectroscopic monitoring of polyphosphates during gradual alkalization of the extra-and intracellular space is proposed as a quick method for the estimation of the cellular polyphosphate content and distribution.Abbreviations CCCP Carbonylcyanide-m-chlorophenyl-hydrazone - NTP/NDP Nucleotide triphosphate/-diphosphate - PCA Perchloric acid - 31P-NMR 31P-nuclear magnetic resonance - PolyP polyphosphates - PP1, PP2, PP3 terminal, second and third phosphate residue of polyphosphates, respectively - PP4 core phosphate residues of polyphosphates  相似文献   

2.
To determine the onset of the Cd2+-hyperaccumulating phenotype in Euglena gracilis, induced by Hg2+ pretreatment (Avilés et al. in Arch Microbiol 180:1–10, 2003), the changes in cellular growth, Cd2+ uptake, and intracellular contents of sulfide, cysteine, γ-glutamylcysteine, glutathione and phytochelatins during the progress of the culture were analyzed. In cells exposed to 0.2 mM CdCl2, the Cd2+-hyperaccumulating phenotype was apparent only after 48 h of culture, as indicated by the significant increase in cell growth and higher internal contents of sulfide and thiol-compounds, along with a higher γ-glutamylcysteine synthetase activity. However, the stiochiometry of thiol-compounds/Cd2+ accumulated was similar for both control and Hg2+-pretreated cells. Moreover, the value for this ratio was 2.1 or lower after 48-h culture, which does not suffice to fully inactivate Cd2+. It is concluded that, although the glutathione and phytochelatin synthesis pathway is involved in the development of the Cd2+-hyperaccumulating phenotype in E. gracilis, apparently other pathways and sub-cellular mechanisms are also involved. These may be an increase in other Cd2+ chelating molecules such as di- and tricarboxylic acids, phosphate and polyphosphates, as well as Cd2+ compartmentation into organelles. César Avilés: In memoriam.  相似文献   

3.
A mutation in the vma2 gene disturbing V-ATPase function in the yeast Saccharomyces cerevisiae results in a five- and threefold decrease in inorganic polyphosphate content in the stationary and active phases of growth on glucose, respectively. The average polyphosphate chain length in the mutant cells is decreased. The mutation does not prevent polyphosphate utilization during cultivation in a phosphate-deficient medium and recovery of its level on reinoculation in complete medium after phosphate deficiency. The content of short chain acid-soluble polyphosphates is recovered first. It is supposed that these polyphosphates are less dependent on the electrochemical gradient on the vacuolar membrane.  相似文献   

4.
31P NMR spectra were obtained from suspensions of Candida utilis, Saccharomyces cerevisiae and Zygosaccharomyces bailii grown aerobically on glucose. Direct introduction of substrate into the cell suspension, without interruption of the measurements, revealed rapid changes in pH upon addition of the energy source. All 31P NMR spectra of the yeasts studied indicated the presence of two major intracellular inorganic phosphate pools at different pH environments. The pool at the higher pH was assigned to cytoplasmic phosphate from its response to glucose addition and iodoacetate inhibition of glycolysis. After addition of substrate the pH in the compartment containing the second phosphate pool decreased. A parallel response was observed for a significant fraction of the terminal and penultimate phosphates of the polyphosphate observed by 31P NMR. This suggested that the inorganic phosphate fraction at the lower pH and the polyphosphates originated from the same intracellular compartment, most probably the vacuole. In this vacuolar compartment, pH is sensitive to metabolic conditions. In the presence of energy source a pH gradient as large as 0.8 to 1.5 units could be generated across the vacuolar membrane. Under certain conditions net transport of inorganic phosphate across the vacuolar membrane was observed during glycolysis: to the cytoplasm when the cytoplasmic phosphate concentration had become very low due to sugar phosphorylation, and into the vacuole when the former concentration had become high again after glucose exhaustion.Non-Standard Abbreviations NMR nuclear magnetic resonance - ppm parts per million - PP polyphosphate - Pi,c cytoplasmic inorganic phosphate - Pi,v vacuolar inorganic phosphate - pHin,c cytoplasmic pH - pHin,v vacuolar pH - FCCP carbonyl p-trifluoromethoxyphenylhydrazone  相似文献   

5.
Seasonal changes in vanadate sensitive plasma membrane H+-ATPase activity of bilberry (Vaccinium myrtillus L.) and Scots pine (Pinus sylvestris L.) were studied in a period from February to August in northern Finland. The plasma membrane isolation was performed by sucrose gradient centrifugation, and the H+-ATPase activity was assayed by spectrophotometrical determination of released inorganic phosphate. The studied species showed seasonal changes from high winter to low spring activity, indicating probable physiological changes between hardened and dehardened tissue. ATPase activity of bilberry peaked up at the beginning of the growth period, obviously due to active phloem loading of photosynthates.  相似文献   

6.
The green alga Chlorella fusca accumulates polyphosphates under conditions of nitrogen starvation while deassembling the photosynthetic apparatus. The polyphosphate content of cells regreening after resupply with nitrate under different culture conditions was investigated by P-31 in-vivo NMR spectroscopy. Neither phosphate deficiency nor anaerobiosis during the first hours of regreening inhibited the recovery of the cells. Polyphosphates were degraded during regeening. Differences in the amount of polyphosphates of phosphate supplied and deficient cells occurred only after more then 8 h. After 16 h phosphate deficient cells had still 75% of the polyphosphate content of phosphate suppled cells. In cells kept under anaerobic conditions polyphosphate degradation was much higher than in oxygen supplied cells. After 8 h they contained less than 50% of the polyphosphate content of oxygen supplied cells. These data suggest that polyphosphates serve as obligatory phosphate source during regreening and may be used as an energy source.Non standard abbreviations EDTA Ethylene diamine tetraacetic acid - FID Free induction decay - MOPSO 3-(N-morpholine)-2-hydroxy-propanesulfonic acid - NMR Nuclear magnetic resonance - PP Polyphosphates - PP4 central phosphate groups of polyphosphates  相似文献   

7.
To develop a salt-tolerant upland rice cultivar (Oryza sativa L.), OsNHX1, a vacuolar-type Na+/H+ antiporter gene from rice was transferred into the genome of an upland rice cultivar (IRAT109), using an Agrobacterium-mediated method. Seven independent transgenic calli lines were identified by polymerase chain reaction (PCR) analysis. These 35S::OsNHX1 transgenic plants displayed a little accelerated growth during seedling stage but showed delayed flowering time and a slight growth retardation phenotype during late vegetative stage, suggesting that the OsNHX1 has a novel function in plant development. Northern and western blot analyses showed that the expression levels of OsNHX1 mRNA and protein in the leaves of three independent transgenic plant lines were significantly higher than in the leaves of wild type (WT) plants. T2 generation plants exhibited increased salt tolerance, showing delayed appearance and development of damage or death caused by salt stress, as well as improved recovery upon removal from this condition. Several physiological traits, such as increased Na+ content, and decreased osmotic potential in transgenic plants grown in high saline concentrations, further indicated that the transgenic plants had enhanced salt tolerance. Our results suggest the potential use of these transgenic plants for further agricultural applications in saline soil.  相似文献   

8.
There are few data reported on radionuclide contamination in Antarctica. The aim of this paper is to report 137Cs, 90Sr and 238,239+240Pu and 40K activity concentrations measured in biological samples collected from King George Island (Southern Shetlands, Antarctica), mostly during 2001–2002. The samples included: bones, eggshells and feathers of penguin Pygoscelis papua, bones and feathers of petrel Daption capense, bones and fur of seal Mirounga leonina, algae Himantothallus grandifolius, Desmarestia anceps and Cystosphaera jacquinotii, fish Notothenia corriceps, sea invertebrates Amphipoda, shells of limpet Nacella concina, lichen Usnea aurantiaco-atra, vascular plants Deschampsia antarctica and Colobanthus quitensis, fungi Omphalina pyxidata, moss Sanionia uncinata and soil. The results show a large variation in some activity concentrations. Samples from the marine environment had lower contamination levels than those from terrestrial ecosystems. The highest activity concentrations for all radionuclides were found in lichen and, to a lesser extent, in mosses, probably because lichens take up atmospheric pollutants and retain them. The only significant correlation (except for that expected between 238Pu and 239+240Pu) was noted for moss and lichen samples between plutonium and 90Sr. A tendency to a slow decrease with time seems to be occurring. Analyses of the activity ratios show varying fractionation between various radionuclides in different organisms. Algae were relatively more highly contaminated with plutonium and radiostrontium, and depleted with radiocesium. Feathers had the lowest plutonium concentrations. Radiostrontium and, to a lesser extent, Pu accumulated in bones. The present low intensity of fallout in Antarctic has a lower 238Pu/239+240Pu activity ratio than that expected for global fallout.  相似文献   

9.
Transmission electron microscopy revealed the presence of electron-dense bodies (EDB) in the cytosol of the acidophilic, thermophilic red alga Cyanidium caldarium. These bodies contain almost exclusively Fe, P, and O and can play a role in Fe storage. 31P-nuclear magnetic resonance analysis identified a sharp signal at −23.3 ppm, which was attributed to the phosphate groups of the inner portions of polyphosphate chains. From this evidence, as well as that of a previous ESR study (Nagasaka et al., BioMetals 16:465–470, 2003), it can be concluded that polyphosphates are the major anionic constituents of the EDB. Omission of Fe from the culture medium resulted in substantially decreased polyphosphate levels, demonstrating the control of cellular polyphosphate content by the Fe status of the culture medium.  相似文献   

10.
The energy status and the phosphate metabolism of Prasiola crispduring and after desiccation stress was investigated by in vivo31P NMR. The effect of desiccation was simulated by additionof the nonionic osmoticum PEG 200 (polyethylene glycol). Photosynthesisand respiration were effectively inhibited under these conditions.The most notable changes in the in vivo 31P NMR spectra werean increase in the cytoplasmic inorganic phosphate signal afterPEG stress, a decrease in the polyphosphates and a lowfieldshift of the core polyphosphate signal followed by an appearanceof extracellular inorganic phosphate. Cytoplasmic pH remainedalmost constant during stress. After a return to control conditions,photosynthesis and respiration recovered within 4 h as wellas the concentrations of the phosphorus metabolites. An as yetunassigned phosphate signal increased in the phosphodiesterregion of the NMR spectra. Simultaneousty, the polyphosphatesignal recovered in intensity and chemical shift. It is suggestedthat phosphate metabolism and complexation of cations to polyphosphatesmay play an important role in the distinct desiccation toleranceof P. crispa. Key words: In vivo 31P NMR, Prasiola crispa, desiccation tolerance, polyphosphates  相似文献   

11.
Yield of S-adenosylmethionine was improved significantly in recombinant Pichia pastoris by controlling NH4 + concentration. The highest production rate was 0.248 g/L h when NH4 + concentration was 450 mmol/L and no repression of cell growth was observed. Within very short induction time (47 h), 11.63 g/L SAM was obtained in a 3.7 L bioreactor.  相似文献   

12.
Significant resolution improvement in 13C,13C-TOCSY spectra of uniformly deuterated and 13C, 15N-labeled protein and 13C,15N-labeled RNA samples is achieved by introduction of multiple-band-selective 13C-homodecoupling applied simultaneously with 1H- or 2H- and 15N-decoupling at all stages of multidimensional experiments including signal acquisition period. The application of single, double or triple band-selective 13C-decoupling in 2D-[13C,13C]-TOCSY experiments during acquisition strongly simplifies the homonuclear splitting pattern. The technical aspects of complex multiple-band homonuclear decoupling and hardware requirements are discussed. The use of this technique (i) facilitates the resonance assignment process as it reduces signal overlap in homonuclear 13C-spectra and (ii) possibly improves the signal-to-noise ratio through multiplet collapse. It can be applied in any 13C-detected experiment.  相似文献   

13.
The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P m) and the growth rate constant (k) were determined, which showed that values of P m and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.  相似文献   

14.
15.
Superfusion of heart cells with hyperosmotic solution causes cell shrinkage and inhibition of membrane ionic currents, including delayed-rectifer K+ currents. To determine whether osmotic shrinkage also inhibits inwardly-rectifying K+ current (IK1), guinea-pig ventricular myocytes in the perforated-patch or ruptured-patch configuration were superfused with a Tyrodes solution whose osmolarity (T) relative to isosmotic (1T) solution was increased to 1.3–2.2T by addition of sucrose. Hyperosmotic superfusate caused a rapid shrinkage that was accompanied by a negative shift in the reversal potential of Ba2+-sensitive IK1, an increase in the amplitude of outward IK1, and a steepening of the slope of the inward IK1-voltage (V) relation. The magnitude of these effects increased with external osmolarity. To evaluate the underlying changes in chord conductance (GK1) and rectification, GK1-V data were fitted with Boltzmann functions to determine maximal GK1 (GK1max) and voltage at one-half GK1max (V0.5). Superfusion with hyperosmotic sucrose solutions led to significant increases in GK1max (e.g., 28±2% with 1.8T), and significant negative shifts in V0.5 (e.g., –6.7±0.6 mV with 1.8T). Data from myocytes investigated under hyperosmotic conditions that do not induce shrinkage indicate that GK1max and V0.5 were insensitive to hyperosmotic stress per se but sensitive to elevation of intracellular K+. We conclude that the effects of hyperosmotic sucrose solutions on IK1 are related to shrinkage-induced concentrating of intracellular K+.  相似文献   

16.
Magnesium sulfate is widely used to prevent seizures in pregnant women with hypertension. The aim of this study was to examine the inhibitory mechanisms of magnesium sulfate in platelet aggregation in vitro. In this study, magnesium sulfate concentration-dependently (0.6–3.0 mM) inhibited platelet aggregation in human platelets stimulated by agonists. Magnesium sulfate (1.5 and 3.0 mM) also concentration-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by thrombin. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12-13-dibutyrate (PDBu, 50 nM). This phosphorylation was markedly inhibited by magnesium sulfate (3.0 mM). Magnesium sulfate (1.5 and 3.0 mM) further inhibited PDBu-stimulated platelet aggregation in human platelets. The thrombin-evoked increase in pHi was markedly inhibited in the presence of magnesium sulfate (3.0 mM). In conclusion, these results indicate that the antiplatelet activity of magnesium sulfate may be involved in the following two pathways: (1) Magnesium sulfate may inhibit the activation of protein kinase C, followed by inhibition of phosphoinositide breakdown and intracellular Ca+2 mobilization, thereby leading to inhibition of the phosphorylation of P47. (2) On the other hand, magnesium sulfate inhibits the Na+/H+ exchanger, leading to reduced intracellular Ca+2 mobilization, and ultimately to inhibition of platelet aggregation and the ATP-release reaction.  相似文献   

17.
18.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

19.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

20.
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts.Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号