首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Murine IL-10 has been reported originally to be produced by the Th2 subset of CD4+ T cell clones. In this study, we demonstrate that human IL-10 is produced by Th0, Th1-, and Th2-like CD4+ T cell clones after both Ag-specific and polyclonal activation. In purified peripheral blood T cells, low, but significant, levels of IL-10 were found to be produced by the CD4+CD45RA+ population, whereas CD4+CD45RA- "memory" cells secreted 5- to 20-fold higher levels of IL-10. In addition, IL-10 was produced by activated CD8+ peripheral blood T cells. Optimal induction of IL-10 was observed after activation by specific Ag and by the combination of anti-CD3 mAb and the phorbol ester tetradecanoyl phorbol acetate, whereas the combination of calcium ionophore A23187 and 12-O-tetradecanoylphorbol-13-acetate acetate was a poor inducer of IL-10 production. Kinetic studies indicated that IL-10 was produced relatively late as compared with other cytokines. Maximal IL-10 mRNA expression in CD4+ T cell clones and purified peripheral blood T cells was obtained after 24 h, whereas maximal IL-10 protein synthesis occurred between 24 h and 48 h after activation. No differences were observed in the kinetics of IL-10 production among Th0, Th1-, and Th2-like subsets of CD4+ T cell clones. The results indicate a regulatory role for IL-10 in later phases of the immune response.  相似文献   

2.
Lymphokines derived from activated T cells regulate the proliferation and postmitotic differentiation of eosinophils in vitro. We investigated whether peripheral blood eosinophilia, which is a characteristic feature of both allergic and nonallergic asthma, correlates with T cell activation and lymphokine production in asthmatic patients. Flow cytometric analysis of T cell activation markers revealed that asthmatic individuals are characterized by increased numbers of IL-2R (CD25)-bearing T cell subsets. The absolute number of IL-2R+ T cells correlated with the eosinophilia observed in the asthmatic patients. Purified CD4+ and CD8+ T cells from allergic and nonallergic asthmatic individuals spontaneously secreted factors that extend the lifespan of eosinophils in vitro. T cells from normal donors displayed this effect only after polyclonal stimulation with anti-CD3 antibody. The eosinophil lifespan-extending factors were also found in sera of asthmatic patients. Identification of these factors was performed by using neutralizing antibodies against IL-3, IL-5, and granulocyte-macrophage CSF. In sera, mainly IL-5 and granulocyte-macrophage CSF were responsible for prolonged eosinophil survival, whereas granulocyte-macrophage CSF was dominant in T cell supernatants. These results indicate that T cells and secretion of lymphokines play an important regulatory function toward eosinophils, which are thought to represent major proinflammatory effector cells in certain types of asthma.  相似文献   

3.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

4.
Frequency analysis of CD4+CD8+ T cells cloned with IL-4   总被引:2,自引:0,他引:2  
The coexpression of both CD4 and CD8 molecules on T cells occurs in the peripheral blood at a low frequency and can be generated transiently on CD4+ peripheral blood T cells by treatment with lectin which induces CD8 biosynthesis and cell surface expression. We have cloned T cells in a nonselective fashion from normal subjects in the presence of either IL-2, rIL-4 and IL-2, or rIL-4 and have examined the phenotypic expression of CD4 and CD8. The addition of excess rIL-4 increased the expression of CD8 on the surface of CD4+ T cell clones but did not increase CD4 expression on CD8+ T cell clones. There were three patterns of CD4 and CD8 expression observed: high density CD8 with no CD4 expression; high density CD4 with low CD8 expression; or high density CD4 with higher cell surface CD8 expression which was regulated by the presence of rIL-4. CD4+ T cell clones originally cultured in IL-2 and rIL-4 and subsequently grown in IL-2 alone exhibited decreased expression of the CD8 molecule. The increased expression of CD8 did not correlate with NK activity or lectin-dependent cytotoxicity in an antigen independent system. In addition, rIL-4 alone or in combination with IL-2 appeared to accelerate the growth curve of T cell clones as compared to IL-2 alone. These results show that IL-4 can upregulate CD8 expression on CD4+ T cell clones while not effecting CD4 expression on CD8+ T cell clones. As class I MHC is the ligand for the CD8 molecule, expression of CD8 induced by IL-4 on CD4+ T cells may allow for increased nonspecific cell to cell contact during the course of an inflammatory response.  相似文献   

5.
In the present study, we have investigated the ability of human T cells to secrete IL-2, IL-4, and IFN-gamma. IL-4 and IFN-gamma were quantified with enzymatic immunoassays and IL-2 with a biologic assay by using the murine IL-2-dependent cell line CTLL-2. PBL, stimulated with Con A or with a combination of the phorbol ester 13-O-tetradecanoylphorbol-12-acetate and the Ca2+ ionophore A23187 secreted IL-2, IL-4, and IFN-gamma. The kinetics of the secretion of the three lymphokines was investigated with two CD4+ clones; one (GEO-2) that produced IL-2, IL-4, and IFN-gamma and another (HY640), that produced only IL-2 and IFN-gamma. Significant IL-2, IL-4, and IFN-gamma production was observed after only 8 h of activation. Maximal levels of IL-2 and IL-4 were found 20 h after the onset of the stimulation which subsequently decreased. In contrast, IFN-gamma levels continued to increase in a period up to 40 h and then leveled off. In spite of these differences in secretion, the kinetics of accumulation of mRNA did not differ. The IL-2, IL-4, and IFN-gamma mRNA were detectable 2 h after stimulation and continued to accumulate for a period up to 20 h. In a series of 22 CD4+ clones, 21 were able to secrete all three lymphokines upon stimulation. Almost all CD8+ clones were able to produce IL-2 and IFN-gamma, but only six of the 23 CD8+ T cell clones secreted IL-4. In addition, five CD4+ (allo)antigen-specific T cell clones were tested for IL-2, IL-4, and IFN-gamma secretion upon specific stimulation. Two alloantigen-specific and two tetanus toxoid-specific T cell clones secreted IL-2, IL-4, and IFN-gamma simultaneously, whereas one alloantigen-specific T cell clone secreted IL-2 and IFN-gamma, but not IL-4. A supernatant of the CD4+ T cell clone GEO-2, that contained high levels of IFN-gamma and IL-4, was unable to induce the low affinity receptor for IgE, CD23, on a Burkitt lymphoma cell line. However, after separation of IL-4 from IFN-gamma by using HPLC, the IL-4-containing fraction-induced CD23, which could be blocked by the fraction that contained IFN-gamma and by a polyclonal rabbit anti-IL-4 antiserum. Finally, the partly purified IL-4, that was devoid of IL-2, promoted the growth of the clone GEO-2.  相似文献   

6.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

7.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

8.
Interleukin (IL)-4 has been shown to be secreted simultaneously with IL-2 and interferon (IFN)-gamma by the majority of CD4+ human T cell clones isolated and cultured using IL-2 as a growth factor. Moreover, IL-4 was found to be as efficient as IL-2 to promote the outgrowth of human T cell clones. In this study we have investigated the pattern of lymphokine production by human T cell clones isolated and cultured in IL-4. Most of the CD4+ T cell clones isolated in IL-4 were found to have the ability to simultaneously secrete IL-2, IL-4, and IFN-gamma upon activation. The T cell clones isolated in IL-4 produced, in general, more IL-4 and less IL-2 than the clones isolated and cultured in IL-2. This tendency did not appear to be a stable feature inasmuch as when representative CD4+ T cell clones were split and cultured in either IL-2 or IL-4, the clones in IL-2 secreted more IL-2 and less IL-4 than the same cells cultured in IL-4. These results indicate that the isolation and culture of human CD4+ T cells in IL-4 did not lead to an "irreversible" development of these cells into Th-1- or Th-2-like cells. Clones isolated in IL-4 responded better to IL-4 than they did to IL-2. On the other hand, T cell clones from the same donor isolated in IL-2 showed the reverse pattern since these latter cells were found to respond better to IL-2 than to IL-4. Furthermore, "nonresponsiveness" of a T cell clones in a [3H]TdR assay to either IL-2 or IL-4 is not a stable feature since clones, unresponsive to a particular lymphokine, could be adapted to become responsive.  相似文献   

9.
In mice, respiratory syncytial virus (RSV) infection enhances allergic airway sensitization, resulting in lung eosinophilia and in airway hyperresponsiveness (AHR). The mechanisms by which RSV contributes to development of asthma and its effects on allergic airway sensitization in mice are not known. We tested whether these consequences of RSV infection can be adoptively transferred by T cells and whether depletion of T cell subsets prevents the effects of RSV infection on subsequent airway sensitization. Mononuclear cells, T lymphocytes, or CD4 or CD8 T cells from peribronchial lymph nodes (PBLN) of RSV-infected mice were transferred into naive BALB/c mice which were then exposed to OVA via the airways. Additionally, RSV-infected mice were depleted of CD4 or CD8 T cells following acute RSV infection but prior to airway sensitization. Following sensitization, airway responsiveness to inhaled methacholine, numbers of lung eosinophils, and levels of IFN-gamma, IL-4, and IL-5 in PBLN cell cultures were monitored. Transfer of T cells from RSV-infected mice resulted in increased eosinophil influx into the lungs, increased IL-5 production, and development of AHR following airway sensitization to allergen. Transfer of CD8 but not CD4 T cells from the PBLN of RSV-infected mice also resulted in AHR following 10 days of OVA exposure. Further, depletion of CD8 T cells prevented these consequences of RSV infection while CD4 T cell depletion reduced them. We conclude that T cells, in particular CD8 T cells, are critical in mediating RSV-induced development of lung eosinophilia and AHR following allergic airway sensitization.  相似文献   

10.
Phenotypic and functional characterization of human T cell clones   总被引:8,自引:0,他引:8  
The capacity of human peripheral blood-derived T cell clones to carry out a variety of functions was examined. T cell clones were generated by stimulating individual peripheral blood T cells with PHA by a procedure that yielded a growing clone from a mean of greater than 92% of the cultured cells. A total of 65 T cell clones (44 CD4+ and 21 CD8+) generated from two individual donors were examined for their functional capabilities. All T cell clones examined secreted IL-2, IFN-gamma, and lymphotoxin/tumor necrosis factor like activity when stimulated with immobilized mAb to the CD3 complex (64.1). When 54 additional T cell clones from a third donor were analyzed, all were found to produce IL-2. Upon activation with immobilized 64.1, all CD4+ clones and 91% of the CD8+ clones induced the generation of Ig-secreting cells from purified B cells. The CD8+ clones that did not serve as Th cells alone were able to augment the capacity of fresh CD4+ cells to generate Ig-secreting cells. Each of these clones was also found to effect MHC-unrestricted cytotoxicity upon activation with immobilized 64.1. The CD8+ clones were somewhat more effective killers than CD4+ clones, although there was considerable overlap. A total of 18 clones was analyzed for TCR beta-chain gene rearrangement. Of the clones exhibiting rearrangements of the beta-chain gene, 94% were found to have a single rearrangement pattern. Finally, the detailed phenotype of 15 (11 CD4+ and 4 CD8+) of these clones was examined. Variable numbers of cells of each of the clones expressed Ag identified by mAb 4B4 (CD29), Leu 8, Leu 15 (CD11b), and NKH1. Moreover, cells of 6 of 11 CD4+ clones and 4 of 4 CD8+ clones also expressed CD45R in addition to CD29; expression of CD45R and CD29 varied with the activation status of the clone. The current data demonstrate that nearly all of the T cell clones were able to accomplish each of the functions examined regardless of the surface phenotype. Inasmuch as the clones were generated using a technique that expanded more than 92% of the circulating T cells, the data imply that the progeny of the vast majority of T cells may have the inherent capacity to exert a wide array of functional activities.  相似文献   

11.
Allergen-specific immunotherapy using peptides is an efficient treatment for allergic diseases. Recent studies suggest that the induction of CD4+ regulatory T (Treg) cells might be associated with the suppression of allergic responses in patients after allergen-specific immunotherapy. Our aim was to identify MHC class II promiscuous T cell epitopes for the birch pollen allergen Bet v 1 capable of stimulating Treg cells with the purpose of inhibiting allergic responses. Ag-reactive CD4+ T cell clones were generated from patients with birch pollen allergy and healthy volunteers by in vitro vaccination of PBMC using Bet v 1 synthetic peptides. Several CD4+ T cell clones were induced by using 2 synthetic peptides (Bet v 1(141-156) and Bet v 1(51-68)). Peptide-reactive CD4+ T cells recognized recombinant Bet v 1 protein, indicating that these peptides are produced by the MHC class II Ag processing pathway. Peptide Bet v 1(141-156) appears to be a highly MHC promiscuous epitope since T cell responses restricted by numerous MHC class II molecules (DR4, DR9, DR11, DR15, and DR53) were observed. Two of these clones functioned as typical Treg cells (expressed CD25, GITR, and Foxp3 and suppressed the proliferation and IL-2 secretion of other CD4+ T cells). Notably, the suppressive activity of these Treg cells required cell-cell contact and was not mediated through soluble IL-10 or TGF-beta. The identified promiscuous MHC class II epitope capable of inducing suppressive Treg responses may have important implication for the development of peptide-based Ag-specific immunotherapy to birch pollen allergy.  相似文献   

12.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

13.
目的研究婴儿型双歧杆菌对花生过敏小鼠肠道Th2型反应的调节作用。方法通过应用花生蛋白诱导肠道的Th2型反应,建立食物过敏小鼠模型。过敏小鼠灌胃给予婴儿型双歧杆菌(ATCC菌或CGMCC0313-2)或不做处理。然后分离小鼠小肠黏膜CD4+T细胞或DC,另取肠黏膜组织进行石蜡包埋甲苯胺蓝染色肥大细胞计数,HE染色进行嗜酸细胞和单个核细胞计数,流式细胞检测CD4+T中Th2(CD4+IL4+T)细胞和Treg(CD4+CD25+Foxp3+T)比例,另取CD4+T进行CFSE标记,与DC共培养4d后流式细胞检测CD4+T增殖反应,收集细胞培养液ELISA检测IL-4、IL-5和IL—13分泌水平。结果过敏组小鼠Th2型细胞数,CD4+T细胞增殖反应,IL4、IL-5和IL-13水平,肠黏膜中肥大细胞、嗜酸性细胞和单个核细胞数均明显高于对照组(P〈0.01),而Treg数目低于对照组(P〈0.01),婴儿双歧杆菌干预后,婴儿双歧杆菌组Th2型细胞数,IL4、IL-5和IL-13水平,肠黏膜中肥大细胞、嗜酸性细胞和单个核细胞数均明显低于过敏组(P〈0.01),而Treg数目高于过敏组(P〈0.01)。结论口服婴儿型双歧杆菌可以抑制花生过敏导致的肠道Th2型反应。  相似文献   

14.
Seventy-eight clones established from tonsillar T lymphocytes of two nonallergic children were tested under different experimental conditions for their ability to induce in vitro IgE synthesis by B cells from allergic or nonallergic donors. After 24 hr preactivation with phytohemagglutinin (PHA), 11 out of 32 CD4+ clones from the first and 17 out of 36 CD4+ clones from the second tonsil donor showed the ability to induce IgE synthesis in vitro by B cells from both allergic and nonallergic individuals, whereas none of 10 CD8+ clones nor T blasts of PHA-induced cell lines obtained from unfractionated T cell suspensions of the same tonsils had such an effect. Seven of the 11 T cell clones from the first tonsil donor active on IgE production after pre-activation with PHA also induced IgE synthesis in vitro by nonallergic and allergic B cells upon stimulation with anti-CD3 monoclonal antibody. Under the same experimental conditions, virtually all of the T cell clones able to induce IgE synthesis in vitro by target B cells showed the ability to stimulate IgG and IgM production as well. T cell clones were also established from the peripheral blood of a nonallergic donor and were tested for their ability to induce IgE synthesis in autologous B cells. After preactivation with PHA, seven out of 35 CD4+ clones induced the production of detectable amounts of both IgE and IgG in autologous B cells. The addition to the cultures of PHA-stimulated unfractionated T cells inhibited in a dose-dependent manner the IgE but not the IgG synthesis induced by an autologous helper T cell clone in autologous B cells. Taken together, these data indicate that a remarkable proportion of human T cell clones upon triggering of the CD3 molecular complex were able to provide help for the synthesis of IgE in B cells from both allergic and nonallergic individuals. The successful induction of IgE synthesis by single T cell clones was apparently related to the lack of concomitant suppressor activity to which IgE-producing cells appeared to be exquisitely sensitive.  相似文献   

15.
We used a TCR-transgenic mouse to investigate whether Th2-mediated airway inflammation is influenced by Ag-specific CD4+CD25+ regulatory T cells. CD4+CD25+ T cells from DO11.10 mice expressed the transgenic TCR and mediated regulatory activity. Unexpectedly, depletion of CD4+CD25+ T cells before Th2 differentiation markedly reduced the expression of IL-4, IL-5, and IL-13 mRNA and protein when compared with unfractionated (total) CD4+ Th2 cells. The CD4+CD25--derived Th2 cells also expressed decreased levels of IL-10 but were clearly Th2 polarized since they did not produce any IFN-gamma. Paradoxically, adoptive transfer of CD4+CD25--derived Th2 cells into BALB/c mice induced an elevated airway eosinophilic inflammation in response to OVA inhalation compared with recipients of total CD4+ Th2 cells. The pronounced eosinophilia was associated with reduced levels of IL-10 and increased amounts of eotaxin in the bronchoalveolar lavage fluid. This Th2 phenotype characterized by reduced Th2 cytokine expression appeared to remain stable in vivo, even after repeated exposure of the animals to OVA aerosols. Our results demonstrate that the immunoregulatory properties of CD4+CD25+ T cells do extend to Th2 responses. Specifically, CD4+CD25+ T cells play a key role in modulating Th2-mediated pulmonary inflammation by suppressing the development of a Th2 phenotype that is highly effective in vivo at promoting airway eosinophilia. Conceivably, this is partly a consequence of regulatory T cells facilitating the production of IL-10.  相似文献   

16.
Studies with human myeloma-derived IgD have demonstrated the existence of IgD-R on peripheral blood T cells. These receptors, which are detected by rosetting with IgD-coated ox E (IgD-rosette-forming cells), are competitively inhibited by IgD, but not by IgM or IgG. Similar results were obtained with human T cell clones and T hybridomas derived from such clones either by rosetting assays or by staining with biotinylated-IgD. In agreement with studies of murine IgD-R+ cells, human IgD-R can be up-regulated by exposure of peripheral blood T cells, T cell clones, and hybridomas derived from such clones, to oligomeric IgD, but not monomeric IgD. Human IgD-R can also be induced by IL-2, IL-4, and IFN-gamma. In contrast with studies of murine IgD-R, which are expressed primarily by CD4+ cells, phenotyping studies show that both the CD4+ and CD8+ human T cell subsets are capable of expressing IgD-R.  相似文献   

17.
IL-4 has been shown to act as a growth factor for human T cells. In addition, IL-4 can enhance CTL activity in MLC, but blocks IL-2 induced lymphokine activated killer cell activity in PBL. In our study, the cloning efficiencies, Ag-specific CTL activity and non-MHC-restricted cytotoxicity of CTL clones generated in IL-2 were compared to those generated in IL-4. In a first experiment, T cells were stimulated with the EBV-transformed B cell line JY and cloned 7 days later with feeder cells and either IL-2 or IL-4. In a second experiment, stimulation of the T cells was carried out in the presence of IL-2 plus anti-IL-4 antibodies or IL-4 plus anti-IL-2 antibodies in order to block the effects of IL-4 and IL-2, respectively, produced by the feeder cells. Although the cloning efficiencies in the second experiment were lower than those obtained in the first experiment, the cloning efficiencies obtained with IL-2 or IL-4 were similar in both experiments. The overall proportion of TCR alpha beta+ T cell clones cytotoxic for the stimulator cell JY established in IL-2 or IL-4 were comparable. A striking difference between the clones obtained in IL-2 or IL-4 was that a large proportion of the clones obtained in IL-4 expressed CD4 and CD8 simultaneously, whereas none of the clones isolated in IL-2 were double positive. Also gamma delta+ T cell clones could be established with IL-4 as a growth factor. TCR gamma delta+ T cell clones isolated in either IL-2 or IL-4 were CD4-CD8- or CD4-CD8+, but the proportion of CD4-CD8+ clones isolated in IL-4 was higher. Interestingly, one TCR gamma delta+ clone isolated in IL-2 was CD4+CD8-. Most of the TCR alpha beta+ and TCR gamma delta+ CTL-clones isolated in IL-2 lysed the NK cell sensitive target cell K562. In contrast, only a small proportion of the TCR alpha beta+ or TCR gamma delta+ CTL clones isolated in IL-4, lysed K562. One TCR gamma delta+ T cell clone (CD-124) isolated in IL-4 and subsequently incubated in IL-2 acquired lytic activity against K562.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
19.
CD4+ TCR-gamma delta+ T cells comprise a very small subset of TCR-gamma delta+ T cells. CD4+ TCR gamma delta+ T cell clones were established to study the phenotypical and functional characteristics of these cells. Thirty-four CD4+ TCR-gamma delta+ T cell clones were established after sorting CD4+ T cells from a pre-expanded TCR-gamma delta+ T cell population. These clones as well as the CD4- TCR-gamma delta+ T cells from the same donor used V gamma 2 and V delta 2. In a second cloning experiment CD4+ TCR-gamma delta+ T cells were cloned directly from freshly isolated TCR-gamma delta+ T cells using a cloning device coupled to a FACS sorter. Forty-three clones were obtained, which all expressed CD4 and TCR-gamma delta. Eleven of these clones used V delta 1 and three of them coexpressed V gamma 2. The other CD4+ TCR-gamma delta+ T cell clones used both V delta 2 and V gamma 2. CD4+ TCR-gamma delta+ T cell clones expressed CD28 irrespective of the V gamma or V delta usage, and were CD11b negative. Three CD4-CD8+ TCR-gamma delta+ clones expressed CD8 alpha but not CD8 beta and were CD11b positive. CD28 expression among CD4-CD8+ and CD4-CD8- was variable but lower than on CD4+ T cell clones. CD4- TCR-gamma delta+ T cell clones using V gamma 2 and V delta 2 specifically lyse the Burkitt lymphoma cell line Daudi and secrete low levels of IFN-gamma and granulocyte-macrophage-CSF upon stimulation with Daudi. In contrast, most CD4+ T cell clones that use V gamma 2 and V delta 2 had a very low lytic activity against Daudi cells and secrete high levels of IFN-gamma and granulocyte-macrophage-CSF after stimulation with Daudi cells. The NK-sensitive cell line K562 was killed efficiently by the CD4- TCR-gamma delta+ T cell clones, but not by CD4+ TCR-gamma delta+ T cell clones, and could not induce cytokine secretion in CD4+ or CD4- T cell clones. CD4+ TCR-gamma delta+ T cell clones, but not the CD4- clones, could provide bystander cognate T cell help for production of IgG, IgM, and IgA in the presence of IL-2 and IgE in the presence of IL-4. Thus, CD4+ TCR-gamma delta+ T cells are similar to CD4+ TCR-alpha beta+ T cells in their abilities to secrete high levels of cytokines and to provide T cell help in antibody production.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号