首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase ATM (ataxia-telangiectasia mutated) activates the cellular response to double strand breaks (DSBs), a highly cytotoxic DNA lesion. ATM is activated by DSBs and in turn phosphorylates key players in numerous damage response pathways. ATM is missing or inactivated in the autosomal recessive disorder ataxia-telangiectasia (A-T), which is characterized by neuronal degeneration, immunodeficiency, genomic instability, radiation sensitivity, and cancer predisposition. The predominant symptom of A-T is a progressive loss of movement coordination due to ongoing degeneration of the cerebellar cortex and peripheral neuropathy. A major deficiency in understanding A-T is the lack of information on the role of ATM in neurons. It is unclear whether the ATM-mediated DSB response operates in these cells similarly to proliferating cells. Furthermore, ATM was reported to be cytoplasmic in neurons and suggested to function in these cells in capacities other than the DNA damage response. Recently we obtained genetic molecular evidence that the neuronal degeneration in A-T does result from defective DNA damage response. We therefore undertook to investigate this response in a model system of human neuron-like cells (NLCs) obtained by neuronal differentiation in culture. ATM was largely nuclear in NLCs, and their ATM-mediated responses to DSBs were similar to those of proliferating cells. Knocking down ATM did not interfere with neuronal differentiation but abolished ATM-mediated damage responses in NLCs. We concluded that nuclear ATM mediates the DSB response in NLCs similarly to in proliferating cells. Attempts to understand the neurodegeneration in A-T should be directed to investigating the DSB response in the nervous system.  相似文献   

2.
Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.  相似文献   

3.
ATM: the product of the gene mutated in ataxia-telangiectasia.   总被引:5,自引:0,他引:5  
Ataxia-telangiectasia mutated (ATM) is the product of the gene mutated in the human genetic disorder ataxia-telangeictasia (A-T). It is a 370 kDa protein that is a member of the phosphatidyl inositol 3-kinases superfamily. A-T cells and those derived from Atm-/- mice are characterized by hypersensitivity to ionizing radiation and defective cell cycle checkpoints. Defects are observed at all cell cycle checkpoints in A-T cells post-irradiation including the G1/S interface where ATM plays an important role in the activation of the tumour suppressor gene product p53. Activation leads to the induction of p21/WAF1, inhibition of cyclin-dependent kinase activity, failure to phosphorylate key substrates such as the retinoblastoma protein and consequently G1 arrest. ATM also plays an important role in the regulation and surveillance of meiotic progression. Absence of ATM gives rise to a spectrum of defects including immunodeficiency, neurodegeneration, radiosensitivity and cancer predisposition. It is clear that a better definition of the role of ATM in DNA damage recognition, cell cycle control and cell signalling may assist in the treatment of the progressive neurodegeneration in this syndrome.  相似文献   

4.
Rothmund-Thomson syndrome (RTS) is an autosomal recessive disorder characterized by growth deficiency, skin and skeletal abnormalities, and a predisposition to cancer. Mutations in the RECQ4 gene, one of five human homologs of the E. coli recQ gene, have been identified in a subset of RTS patients. Cells derived from RTS patients show high levels of chromosomal instability, implicating this protein in the maintenance of genomic integrity. However, RECQ4 is the least characterized of the RecQ helicase family with regard to its molecular and catalytic properties. We have expressed the human RECQ4 protein in E. coli and purified it to near homogeneity. We show that RECQ4 has an ATPase function that is activated by DNA, with ssDNA being much more effective than dsDNA in this regard. We have determined that a DNA length of 60 nucleotides is required to maximally activate ATP hydrolysis by RECQ4, while the minimal site size for ssDNA binding by RECQ4 is between 20 and 40 nucleotides. Interestingly, RECQ4 possesses a single-strand DNA annealing activity that is inhibited by the single-strand DNA binding protein RPA. Unlike the previously characterized members of the RecQ family, RECQ4 lacks a detectable DNA helicase activity.  相似文献   

5.
The ataxia telangiectasia mutated (ATM) protein plays a central role in early stages of DNA double strand break (DSB) detection and controls cellular responses to this damage. Although hypersensitive to ionizing radiation-induced clonogenic lethality, ataxia telangiectasia cells are paradoxically deficient in their ability to undergo ionizing radiation-induced apoptosis. This contradiction illustrates the complexity of the central role of ATM in DNA damage response and the need for further understanding. Certain hexavalent chromium (Cr(VI)) compounds are implicated as occupational respiratory carcinogens at doses that are both genotoxic and cytotoxic. Cr(VI) induces a broad spectrum of DNA damage, but Cr(VI)-induced DSBs have not been reported. Here, we examined the role of ATM in the cellular response to Cr(VI) and found that Cr(VI) activates ATM. We also show that physiological targets of ATM, p53 Ser-15 and Chk2 Thr-68, were phosphorylated by Cr(VI) exposure in an ATM-dependent fashion. We found that ATM-/- cells were markedly resistant to Cr(VI)-induced apoptosis but considerably more sensitive to Cr(VI)-induced clonogenic lethality than wild type cells, indicating that resistance to Cr(VI)-induced apoptosis did not confer a selective survival advantage. However, analysis of long term growth arrest revealed a striking difference: ATM-/- cells were markedly less able to recover from Cr(VI)-induced growth arrest. This indicates that terminal growth arrest is the fate of these apoptosis-resistant cells. In summary, ATM is involved in cellular response to a complex genotoxin that may not directly induce DSBs. Our data suggest that ATM is a major signal initiator for genotoxin-induced apoptosis but, paradoxically, also contributes to maintenance of cell survival by facilitating recovery/escape from terminal growth arrest. The results also strongly suggest that terminal growth arrest is not merely an extended or even irreversible form of checkpoint arrest, but instead an independent and unique cell fate pathway.  相似文献   

6.
7.
Ionizing radiation induces autophosphorylation of the ataxia-telangiectasia mutated (ATM) protein kinase on serine 1981; however, the precise mechanisms that regulate ATM activation are not fully understood. Here, we show that the protein phosphatase inhibitor okadaic acid (OA) induces autophosphorylation of ATM on serine 1981 in unirradiated cells at concentrations that inhibit protein phosphatase 2A-like activity in vitro. OA did not induce gamma-H2AX foci, suggesting that it induces ATM autophosphorylation by inactivation of a protein phosphatase rather than by inducing DNA double-strand breaks. In support of this, we show that ATM interacts with the scaffolding (A) subunit of protein phosphatase 2A (PP2A), that the scaffolding and catalytic (C) subunits of PP2A interact with ATM in undamaged cells and that immunoprecipitates of ATM from undamaged cells contain PP2A-like protein phosphatase activity. Moreover, we show that IR induces phosphorylation-dependent dissociation of PP2A from ATM and loss of the associated protein phosphatase activity. We propose that PP2A plays an important role in the regulation of ATM autophosphorylation and activity in vivo.  相似文献   

8.
We expressed six forms of p21-ras polypeptides in Escherichia coli with differing transformation potentials resulting from amino acid substitutions at position 12. The ability of the encoded p21's to autophosphorylate, bind guanine nucleotides, and hydrolyze GTP was assessed. All versions of p21 bound GTP equivalently; the kinase activity, while dependent upon residue 12, did not correlate with the transforming potential of the polypeptide. All transforming versions exhibited an impaired GTPase activity, while a novel nontransforming derivative [p21(pro-12)] possessed an enhanced GTPase activity. These results provide strong support for the proposal that an impairment of the cellular p21 GTPase activity can unmask its transforming potential.  相似文献   

9.
Human dynamin-like protein 1 (DLP-1) is involved in the fission of mitochondrial outer membranes, a process that helps to maintain mitochondrial morphology and to reduce the accumulation of functional and structural defects in mitochondria. DLP-1 is a ~80 kDa membrane-interacting protein and contains a GTPase domain, a middle domain, a putative PH-like domain and a GTPase effector domain (GED). While the GED has been suggested to be important on protein oligomerization and GTPase activation, functional relationships between the other domains especially the roles of the middle domain in protein activity remains less clear. In this study, we have investigated the biochemical properties of recombinant DLP-1 wild-type and selected mutants, all expressed in Escherichia coli. The middle domain mutants G350D, R365S and ΔPH (lacking the putative PH-like domain) severely impair the GTPase activity, but have no obvious effects on protein tetramerization and liposome-binding properties, suggesting these mutants probably affect protein intra-molecular interactions. Our study also suggested that proper domain-domain interactions are important for DLP-1 GTPase activity.  相似文献   

10.
Inherited biallelic mutations of the ATM (ataxia-telangiectasia mutated) gene in humans cause ataxia-telangiectasia, a rare autosomal recessive disorder associated with progressive neuro-degeneration, cancer predisposition, immunodeficiency, and hypersensitivity to ionizing radiation. The ATM gene is highly conserved across a wide range of species. In an attempt to establish a zebrafish (Danio rerio) model of ataxia-telangiectasia, we cloned the coding sequence of the catalytic domain of the zebrafish homologue of ATM and found it to contain an open reading frame encoding 907 amino acids at the carboxyl terminus of the zebrafish ATM (zATM). The catalytic domain of zATM shares 67% and 66% homology with human ATM (hATM) and mouse ATM (mATM), respectively. The full-length mRNA encoding zATM is found to be approximately 11 kb by Northern hybridization, and the expression of zATM is observed in different adult and embryonic tissues. Overexpression of a kinase-inactive zATM domain in human cells has a dominant-negative effect against hATM function. Expression of the altered zATM in ZF4 cells leads to an A-T-like phenotype in response to ionizing radiation. These results taken together indicate that zATM is the homologue of hATM. Furthermore, using the kinase-inactive form of zATM should allow manipulation of zATM function in fish cells.  相似文献   

11.
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts containing a mutant of TopBP1 that cannot be phosphorylated on Ser-1131 are defective in the ATR-dependent phosphorylation of Chk1 in response to DSBs but not to DNA replication stress. Thus, TopBP1 is critical for the ATM-dependent activation of ATR following production of DSBs in the genome.  相似文献   

12.
The ability of SV40-transformed human (ataxia-telangiectasia) fibroblasts to maintain Epstein-Barr virus (EBV)-based plasmids and cosmids extrachromosomally has been investigated. Transfection of a culture of cells with two different plasmids gave rise to cell clones which were able to maintain both plasmids extrachromosomally. When an EBV-based cosmid library was transfected into the cells and an individual cell clone was isolated, the extrachromosomal DNA derived from the cosmid contained numerous deletions and rearrangements. When individual cosmids were transfected into the culture, and several cell clones were isolated, the intracellular cosmid-derived DNA again showed the presence of multiple deletions and rearrangements. We conclude that although SV40-transformed cells are able to maintain more than one different EBV-based plasmid extrachromosomally, large EBV-derived molecules are extensively rearranged. SV40-transformed human fibroblasts cannot therefore be usefully used in attempting to clone genes from EBV-based cosmid libraries.  相似文献   

13.
During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.  相似文献   

14.
Protein phosphatase 5 (Ppp5), a tetratricopeptide repeat domain protein, has been implicated in multiple cellular functions, including cellular proliferation, migration, differentiation and survival, and cell cycle checkpoint regulation via the ataxia telangiectasia mutated/ATM and Rad3-related (ATM/ATR) signal pathway. However, the physiological functions of Ppp5 have not been reported. To confirm the role of Ppp5 in cell cycle checkpoint regulation, we generated Ppp5-deficient mice and isolated mouse embryonic fibroblast (MEF) cells from Ppp5-deficient and littermate control embryos. Although Ppp5-deficient mice can survive through embryonic development and postnatal life and MEF cells from the Ppp5-deficient mice maintain normal replication checkpoint induced by hydroxyurea, Ppp5-deficient MEF cells display a significant defect in G(2)/M DNA damage checkpoint in response to ionizing radiation (IR). To determine whether this defect in IR-induced G(2)/M checkpoint is due to altered ATM-mediated signaling, we measured ATM kinase activity and ATM-mediated downstream events. Our data demonstrated that IR-induced ATM kinase activity is attenuated in Ppp5-deficient MEFs. Phosphorylation levels of two known ATM substrates, Rad17 and Chk2, were significantly reduced in Ppp5-deficient MEFs in response to IR. Furthermore, DNA damage-induced Rad17 nuclear foci were dramatically reduced in Ppp5-deficient MEFs. These results demonstrate a direct regulatory linkage between Ppp5 and activation of the ATM-mediated G(2)/M DNA damage checkpoint pathway in vivo.  相似文献   

15.
Fatty acyl-CoA esters are extremely important in cellular homeostasis. They are intermediates in both lipid metabolism and post-translational protein modifications. Among these modification events, protein palmitoylation seems to be unique by its reversibility which allows dynamic regulation of the protein hydrophobicity. The recent discovery of an enzyme family that catalyze protein palmitoylation has increased the understanding of the enzymology of the covalent attachment of fatty acids to proteins. Despite that, the molecular mechanism of supplying acyl-CoA esters to this reaction is yet to be established. Acyl-coenzyme A-binding proteins are known to bind long-chain acyl-CoA esters with very high affinity. Therefore, they play a significant role in intracellular acyl-CoA transport and pool formation. The purpose of this work is to explore the potential of one of the acyl-CoA-binding proteins to participate in the protein palmitoylation. In this study, a recombinant form of ACBP derived from human erythroid cells was expressed in E. coli, purified, and functionally characterized. We demonstrate that recombinant hACBP effectively binds palmitoyl-CoA in vitro, undergoing a shift from a monomeric to a dimeric state, and that this ligand-binding ability is involved in erythrocytic membrane phosphatidylcholine (PC) remodeling but not in protein acylation.  相似文献   

16.
The ataxia telangiectasia mutated (ATM) and ATR (ATM and Rad3-related) protein kinases exert cell cycle delay, in part, by phosphorylating Checkpoint kinase (Chk) 1, Chk2, and p53. It is well established that ATR is activated following UV light-induced DNA damage such as pyrimidine dimers and the 6-(1,2)-dihydro-2-oxo-4-pyrimidinyl-5-methyl-2,4-(1H,3H)-pyrimidinediones, whereas ATM is activated in response to double strand DNA breaks. Here we clarify the activation of these kinases in cells exposed to IR, UV, and hyperoxia, a condition of chronic oxidative stress resulting in clastogenic DNA damage. Phosphorylation on Chk1(Ser-345), Chk2(Thr-68), and p53(Ser-15) following oxidative damage by IR involved both ATM and ATR. In response to ultraviolet radiation-induced stalled replication forks, phosphorylation on Chk1 and p53 required ATR, whereas Chk2 required ATM. Cells exposed to hyperoxia exhibited growth delay in G1, S, and G2 that was disrupted by wortmannin. Consistent with ATM or ATR activation, hyperoxia induced wortmannin-sensitive phosphorylation of Chk1, Chk2, and p53. By using ATM- and ATR-defective cells, phosphorylation on Chk1, Chk2, and p53 was found to be ATM-dependent, whereas ATR also contributed to Chk1 phosphorylation. These data reveal activated ATM and ATR exhibit selective substrate specificity in response to different genotoxic agents.  相似文献   

17.
A C Moore  W S Agnew  M A Raftery 《Biochemistry》1982,21(24):6212-6220
Biochemical properties of a detergent-solubilized tetrodotoxin binding component from Electrophorus electricus have been examined and compared with those found for the membrane-bound protein. The toxin binding component was solubilized with high efficiency by a variety of nonionic detergents and with lower efficiency by sodium cholate and deoxycholate. Detergent-solubilized preparations bound tetrodotoxin and saxitoxin tightly and specifically, and this binding was observed to be rapidly and irreversibly blocked by carboxylate-modifying reagents. Inactivation by carbodiimide and glycine ester or by a trimethyloxonium salt could be prevented by tetrodotoxin occupancy of the binding site. Tetrodotoxin binding activity in both solubilized preparations and in membranes was found to be highly resistant to proteases. In contrast, the activity was extremely sensitive to the action of phospholipase A2. The biochemical properties of the tetrodotoxin binding component solubilized in mixed lipid-detergent micelles are similar to those found in native membranes, with respect to the characteristics of equilibrium toxin binding and to the sensitivity of toxin binding activity to chemical modification and degradative enzymes. There were some differences with respect to the kinetics of tetrodotoxin binding. In addition, the tetrodotoxin binding component from eel is shown to behave as a glycoprotein, being selectively absorbed to resins coupled to concanavalin A, wheat germ agglutinin, Lens culinaris lectin, and ricin with the appropriate glycoside.  相似文献   

18.
19.
Human peroxiredoxin 2 (Prx2), which is abundant in erythrocytes, has been shown to play a key role in protecting erythrocytes against oxidative stress by scavenging reactive oxygen species as well as participating in cell signal transduction. Here, human Prx2 gene was successfully cloned into Escherichia coli BL21 (DE3) for Prx2 expression. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis suggested that the recombinant protein was expressed mainly in a soluble form. The recombinant protein was purified by one-step Ni-nitrilotriacetic acid chelating affinity chromatography to a purity of up to 91.5%. The peroxidase activity of Prx2 to scavenge H(2)O(2) was determined by a ferrithiocyanate assay. The ability of Prx2 to protect plasmid DNA was tested by using a mixed-function oxidation system, and results showed that Prx2 could prevent DNA from undergoing oxidative stress. Ultraviolet (UV)-induced cell apoptosis assay demonstrated that Prx2 is also able to protect NIH/3T3 cells from UV-induced damage, suggesting its possible applications in cosmetics and other areas.  相似文献   

20.
One challenge in biotechnology industry is to produce recombinant proteins with prolonged serum half-life. One strategy for enhancing the serum half-life of proteins includes increasing the molecular weight of the protein of interest by fusion to the Fc part of an antibody. In this context, we have expressed a homodimer fusion protein in CHO cells which consists of two identical polypeptide chains, in which our target protein, recombinant human erythropoietin (rhEpo), is N-terminally linked with the Fc part of a human IgG1 molecule. In the present study, culture supernatant of a stable clone was collected and purified by affinity chromatography prior characterization. We emphasized product quality aspects regarding the fusion protein itself and in addition, post-translational characterization of the subunits in comparison to human antibodies and rhEpo. However, overproduction of recombinant proteins in mammalian cells is well established, analysis of product quality of complex products for different purposes, such as product specification, purification issues, batch to batch consistency and therapeutical consequences, is required. Besides product quantification by ELISA, N-acetylneuraminic acid quantification in microtiterplates, quantitative isoform pattern and entire glycan profiling was performed. By using these techniques for the characterization of the recombinant human Epo-Fc (rhEpo-Fc) molecule itself and furthermore, for the separate characterization of both subunits, we could clearly show that no significant differences in the core glycan structures compared to rhEpo and human antibody N-glycans were found. The direct comparison with other rhEpo-Fc fusion proteins failed, because no appropriate data were found in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号