首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of T-lymphocytes and macrophages by human immunodeficiency virus (HIV) is mediated by the binding of the HIV envelope glycoprotein to the cell-surface receptor glycoprotein CD4. A soluble, recombinant CD4 molecule (rCD4), produced by expression of a truncated CD4 gene in Chinese hamster ovary (CHO) cells [Smith et al. (1987) Science 238, 1704-1707], is in clinical trials as a potential therapeutic agent in the treatment of acquired immunodeficiency syndrome (AIDS). In the present study, the structures of the Asn-linked oligosaccharides of soluble rCD4 have been elucidated. The rCD4 molecule has two potential sites for N-glycosylation, Asn-271 and Asn-300. Tryptic glycopeptides containing either of the sites were purified by reversed-phase HPLC, and their oligosaccharides were released enzymatically. The structures of the oligosaccharides were determined by methylation analysis, high-pH anion-exchange chromatography, fast-atom bombardment mass spectrometry, and 1H NMR spectroscopy at 500 MHz. Asn-271 was found to carry diantennary N-acetyllactosamine-type ("complex") oligosaccharides, of which 8% were asialo, 55% were monosialyl, and 37% were disialyl. Approximately 18% of these structures contained fucose alpha(1-->6) linked to the reducing GlcNAc residue. Two different hybrid structures were found to account for 34% of the oligosaccharides attached to Asn-300. The remainder of the oligosaccharides attached to Asn-300 were diantennary N-acetyllactosamine-type, of which 10% were asialo, 61% were monosialyl, and 29% were disialyl. Approximately 9% of the hybrid structures and 40% of the N-acetyllactosamine structures at Asn-300 were found to contain fucose alpha(1-->6) linked to the innermost GlcNAc residue.  相似文献   

2.
Seven kinds of asparagine-linked oligosaccharides were bound to the Fc region of a human immunoglobulin D(NIG-65). The oligosaccharides quantitatively released from four species of glycopeptides by digestion with almond glycopeptidase, were separated by Bio-Gel p-4 column chromatography and were purified further by thin-layer chromatography. The sugars were identified with GC-MS following the permethylation of respective oligosaccharide. To Asn-68(NIG-65 Fc numbering (1)), two kinds of high-mannose-type oligosaccharides were bonded. To Asn-159, a kind of hybride-type and two kinds of bisected complex-type oligosaccharides were attached. From Asn-210, four kinds of bisected complex-type oligosaccharides were isolated.  相似文献   

3.
Immunoglobulin M is an especially important product of the immune system because it plays a critical role in early protection against infections. In this report, the glycosylation pattern of the protective murine monoclonal IgM 12A1 to Cryptococcus neoformans polysaccharide was analyzed by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Peptide mapping studies covering 88% of the deduced amino acid sequence indicated that of the six potential N-glycosylation sites in this antibody only five were utilized, as the tryptic peptide derived from monoclonal IgM 12A1 containing Asn-260 was recovered without carbohydrates. The oligosaccharide side chains of monoclonal IgM 12A1 were characterized at each of the N-glycosylation sites. Asn-166 possessed 20 monosialylated and nonsialylated, and fucosylated and nonfucosylated complex- and hybrid-type oligosaccharides and one high-mannose-type oligosaccharide. Thirteen oligosaccharides were attached to the site at Asn-401, including six complex-type, four hybrid-type, and three high-mannose-type oligosaccharides. Twelve hybrid-type oligosaccharides were attached to Asn-378, three of which had terminal sialic acids. Eleven hybrid-type oligosaccharides were attached to Asn-331, seven of which had terminal sialic acids. Only two high-mannose type oligosaccharides were attached to Asn-363. These results indicated great complexity in the structure and composition of oligosaccharides attached to individual IgM glycosylation sites.  相似文献   

4.
The primary structure of mouse interleukin-3 (IL-3) expressed by recombinant baculovirus-infected silkworm (Bombyx mori) larvae was analyzed by subjecting isolated IL-3 derived peptides to liquid secondary ion mass spectrometry. Two species of IL-3 were isolated from the silkworm hemolymph by reverse-phase high-pressure liquid chromatography. The major component has M(r)20-22 x 10(3) as determined by SDS-PAGE. Liquid secondary ion mass spectrometric analysis was carried out on the reduced tryptic and endopeptidase lysyl-C peptides of glycosylated and deglycosylated IL-3. These studies provided evidence that (1) Asn-16 is heterogeneously glycosylated with four different oligosaccharides, (2) Asn-86 is either nonglycosylated or has attached to it one oligosaccharide, (3) the N-glycosylation sites Asn-44 and Asn-51 are not glycosylated, and (4) there is no O-glycosylation. Liquid secondary ion mass spectrometric analysis of the unreduced tryptic peptides provided evidence for disulfide linkages between Cys-140 and Cys-79 or Cys-80 and between Cys-17 and Cys-79 or Cys-80. In comparison to the major component, a minor IL-3 species (M(r) 17-19 x 10(3) by SDS-PAGE) isolated from the hemolymph showed no difference with respect to the glycosylation pattern or the disulfide linkages, but it was cleaved between Ala-127 and Ser-128, and only a disulfide linkage between Cys-140 and Cys-79 or Cys-80 held the molecule together.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Porcine pancreatic DNase has been purified to homogeneity. The polypeptide exhibits a single band of Mr = 34,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is a glycoprotein containing glucosamine. The results of end group analyses show leucine at the NH2 terminus and alanine at the COOH terminus. The enzymatic properties of the purified porcine DNase are very similar to those of bovine and ovine DNases. The sequence data on the tryptic and chymotryptic peptides derived from CNBr fragments of porcine DNase, along with the results of automated Edman degradation of the intact polypeptide and of the two largest CNBr fragments, indicate the complete amino acid sequence of porcine DNase to be as follows:L-R- I-A-F-N-I-R-T-F-G-E-T-K-M-S-N-A-T-S-N-Y-I-V-R-I-L-S-R-Y-D-I-A-L-I-Q- E-V-R-D-S-H-L-T-A-V-G-K-L-L-N-E-L-N-Q-D-D-P-N-N-Y-H-H-V-V-S-E-P-L-G-R- S-T-Y-K-E-R-Y-L-F-V-F-R-P-N-Q-V-S-V-L-D-S-Y-L-Y-D-D-G-C-E-P-C-G-N-D-T- F-N-R-E-P-S-V-V-K-F-S-S-P-F-T-Q-V-K-E-F-A-I-V-P-L-H-A-A-P-S-D-A-A-A-E- I-N-S-L-Y-D-V-Y-L-N-V-R-Q-K-W-D-L-Q-D-I-M-L-M-G-D-F-N-A-G-C-S-Y-V-T- T-S-H-W-S-S-I-R-L-R-E-S-P-P-F-Q-W-L-I-P-D-T-A-D-T-T-V-S-S-H-T-C-A-Y- D-R-I-V-V-A-G-P-L-L-Q-R-A-V-V-P-D-S-A-A-P-F-D-F-Q-A-A-F-G-L-S-Q-E-T- A-L-A-I-S-D-H-Y-P-V-E-V-T-L-K-R-A. The polypeptide consists of 262 amino acid residues. One of the two disulfide loops links Cys-101 and Cys-104 and the other Cys-173 and Cys-209. Two carbohydrate side chains are attached at Asn-18 and Asn-106.  相似文献   

6.
Tissue plasminogen activator (t-PA) is an important initiator of fibrinolysis. The t-PA polypeptide has four potential N-glycosylation sites of which three are occupied in type I (Asn-117, -184, and -448) and two in type II (Asn-117 and -448). In an effort to elucidate the factors controlling the expression of N-linked oligosaccharides on this polypeptide, we have used a combination of sequential exoglycosidase digestion, methylation analysis, and controlled acetolysis to determine the oligosaccharide structures at each of the N-glycosylation sites of type I and type II t-PA when isolated from a human colon fibroblast cell strain and from a Bowes melanoma cell line. Our results suggest the following: (i) type I and type II t-PA are N-glycosylated in an identical way at Asn-117 and Asn-448, when isolated from the same cell line; (ii) Asn-117 is predominantly associated with oligomannose-type structures in all cases; (iii) Asn-184 and Asn-448 are predominantly associated with complex-type structures when t-PA is isolated from fibroblast cells, but with both complex- and oligomannose-type structures when isolated from melanoma cells; (iv) fibroblast cell derived t-PA is associated with both neutral and sialylated oligosaccharides, while melanoma cell derived t-PA is also associated with sulfated oligosaccharides, which are located exclusively at Asn-448 of type II t-PA; (v) no complex-type structures occur in common between t-PA from the two cell lines. These results indicate that the t-PA glycoprotein is secreted by each cell line as a set of glycoforms, each glycoform being unique with respect to the nature and disposition of oligosaccharides on a common polypeptide. Further, the two cell lines express no glycoform in common, despite expressing the same t-PA polypeptide. The implications of these results for both the control of oligosaccharide processing in different cell lines and the genetic engineering of mammalian glycoproteins are discussed.  相似文献   

7.
The structures of the N-linked oligosaccharides of miraculin, which is a taste modifying glycoprotein isolated from miracle fruits, berries of Richadella dulcifica, are reported. Asparagine-linked oligosaccharides were released from the protein by glycopeptidase (almond) digestion. The reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated by high performance liquid chromatography (HPLC) on an ODS-silica column. More than five kinds of oligosaccharide fractions were separated by the one chromatographic run. The structure of each oligosaccharide thus isolated was analyzed by a combination of sequential exoglycosidase digestion and another kind of HPLC with an amidesilica column. Furthermore, high resolution proton nuclear magnetic resonance (1H NMR) measurements were carried out. It was found that 1) five oligosaccharides obtained are a series of compounds with xylose-containing common structural core, Xyl beta 1----2 (Man alpha 1----6) Man beta 1----4-GlcNAc beta 1----4 (Fuca1----3)GlcNAc, 2) a variety of oligosaccharide structures are significant for two glycosylation sites, Asn-42 and Asn-186, and 3) two new oligosaccharides, B and D, with unusual structures containing monoantennary complex-type were characterized. (formula; see text)  相似文献   

8.
We have purified recombinant murine interleukin 5 (rmIL-5) from the supernatant of Chinese hamster ovary cells. Each peptide fragment of the purified rmIL-5 generated by Achromobacter protease I digestion was characterized and glycosylation sites were determined. Although rmIL-5 contains three potential sites of N-linked glycosylation (Asn-26, Asn-55 and Asn-69), Asn-69 is not glycosylated. The oligosaccharides released from the protein by hydrazinolysis were fractionated by paper electrophoresis, lectin column chromatography and gel permeation chromatography, and their structures were analysed by sequential exoglycosidase digestion in combination with methylation analysis. The results indicated that they are a mixture of bi-, tri- and tetraantennary complex-type sugar chains with and without a fucose at the C-6 position of the proximal N-acetylglucosamine residue and high-mannose-type sugar chains. Although > 80% of the sugar chains are neutral oligosaccharides similar to recombinant human IL-5 (rhIL-5; Kodama, S., Endo, T., Tsuroka, N., Tsujimoto, M. and Kobata, A. (1991) J. Biochem., 110, 693-701), rmIL-5 has more tetraantennary oligosaccharides than rhIL-5. A site differential study revealed that Asn-55 has more tetraantennary oligosaccharides than Asn-26.  相似文献   

9.
The full sequence of the Thy-1 membrane glycoprotein of rat brain is reported. The sequence was determined from tryptic and V-8 proteinase peptides and consisted of 111 amino acids. The amino terminus was blocked and consisted of a pyroglutamic acid residue. The molecule contained two disulphide bonds, namely Cys-9--Cys-111 and Cys-19--Cys-85. Three N-linked amino sugars were located at Asn-23, Asn-74 and Asn-98. In each case the sequence on the C-terminal side of the attachment point was Asn-Xaa-Thr as would be expected for N-linkage. The C-terminal peptides were unusual, in that they were either obtained in a highly aggregated form, or could only be purified after binding to Brij 96 micelles. Thus they appeared to have hydrophobic properties, yet did not contain any extended sequence of hydrophobic amino acids. Other unusual features of the C-terminal peptides were the presence of unidentified ninhydrin-positive material and of glucosamine and galactosamine. The C-terminal residue has not been directly identified but Cys-111 is the last conventional amino acid. It is suggested that the hydrophobic properties of the C-terminal peptides may be due to the linkage of lipid. The sequence of the Thy-1 glycoprotein showed homologies with immunoglobulin domains. This relationship is examined in detail in the paper following [Cohen et al. (1981) Biochem. J. 193, 000--000].  相似文献   

10.
The alterations in complex-type N-linked oligosaccharides that can occur when an animal cell line is transformed by two dissimilar viruses were examined by comparing the N-linked oligosaccharides of baby hamster kidney (BHK) cells, metabolically radiolabeled with [2-3H]mannose, to the same class of oligosaccharides from BHK cells separately transformed by Rous sarcoma virus (RS-BHK), an RNA retrovirus, and polyoma virus (PY-BHK), a DNA papovavirus. Based on experiments that utilized serial lectin affinity chromatography, glycosidase digestions, and methylation analyses, both RS-BHK and PY-BHK cells demonstrated a significant increase in the relative amounts of tri- and tetraantennary complex-type N-linked oligosaccharides containing the branching sequence, [GlcNAc-beta(1,6)Man-alpha(1,6)Man], compared to the nontransformed BHK cells. In addition, almost all of the poly-N-acetyllactosamine sequence, [GlcNAc-beta(1,3)-Gal-beta(1,4)], was expressed on the tri- and tetraantennary N-linked oligosaccharides from BHK and RS-BHK cells that contain the sequence, [GlcNAc-beta(1,6)Man-beta(1,6)Man]. The increase in the relative amounts of this latter sequence in the transformed cells, therefore, most likely results in an increase in the amount of poly-N-acetyllactosamine sequence on the N-linked glycopeptides of these cells. The analysis of the degree of sialylation of the complex-type N-linked oligosaccharides from BHK and RS-BHK cells by ion exchange chromatography revealed no apparent differences, and in both of these cell types approximately 3% of the glycopeptide fraction radiolabeled with mannose was recovered in a highly negatively charged fraction that was identified by keratanase digestion to be keratan sulfate.  相似文献   

11.
Structures of the asparagine-linked sugar chains of laminin   总被引:13,自引:0,他引:13  
This investigation describes the isolation and characterization of oligosaccharides of the basement membrane glycoprotein, laminin. Pronase-released glycopeptides of isolated laminin, from a mouse Engelbreth-Holm-Swarm tumor, were fractionated using a combination of gel permeation chromatography and Con A-Sepharose affinity chromatography. The glycopeptides were analyzed for sugar linkage patterns by methylation analysis. Glycopeptides and hydrazine-released oligosaccharides were further analyzed using endo-beta-galactosidase, endo-beta-N-acetylglucosaminidase H and specific exoglycosidases in conjunction with calibrated gel permeation chromatography. Based on these experiments, murine tumor laminin was shown to contain asparagine-linked oligosaccharides with the following structures: bi-, tri- and tetraantennary complex-type oligosaccharides; polylactosaminyl side chains containing Gal(beta 1----4)GlcNAc(beta 1----3) repeating units attached to the trimannose core portion of the bi-, tri- and tetraantennary complex-type oligosaccharides; unusual complex-type oligosaccharides terminated at the nonreducing end with sialic acid, alpha-galactose, beta-galactose and beta-N-acetylglucosamine; alpha-galactosyl residues linked to N-acetyllactosamine sequences; high-mannose-type oligosaccharides. These results, in conjunction with analytical data, indicate that most of the carbohydrate of this laminin is N-linked to asparagine and that there are about 43 such N-linked oligosaccharides per laminin molecule.  相似文献   

12.
The complete peptide map of purified recombinant human interleukin 5 (rhIL-5) was determined to verify its primary structure, glycosylation sites, and disulfide bonding structure. Each peptide fragment generated by Achromobacter protease I (API) digestion was purified and characterized by amino acid analysis and amino acid sequence analysis. After digestion with API, we could identify all the peptides which were expected from human IL-5 cDNA sequence. The analyses of sulfhydryl content in rhIL-5 molecule and disulfide-containing peptide obtained from API digestion indicated that active form of rhIL-5 existed as an antiparallel dimer linked by two pairs of Cys-44 and Cys-86. In addition, we concluded that Thr-3 and Asn-28 were glycosylated. The results indicate that primary structure of rhIL-5 is highly homogeneous and observed heterogeneity is due to the difference in the content of carbohydrate.  相似文献   

13.
The positions of the interchain and intrachain disulfide bonds and the glycosylation site in a lectin of the acorn barnacle Megabalanus rosa were determined. The lectin (Mr 140,000) is composed of the same subunit (Mr 22,000) which is cross-linked by disulfide bonds to form a dimer. Intact lectin yielded two fragments, CB1 and CB2, by cleavage with cyanogen bromide. One intrachain and two interchain disulfide bonds were identified as Cys-53-Cys-61, Cys-14-Cys-50' and Cys-50-Cys-14', respectively, by enzymatic digestion and Edman degradation of CB1. Two intrachain disulfide bonds were determined as Cys-78-Cys-168 and Cys-144-Cys-160 by enzymatic digestion of CB2. The two intrachain disulfide bonds are well conserved through all invertebrate lectins and calcium-dependent animal lectins. S-Carboxamidomethylated lectin was digested with Staphylococcus aureus V8 proteinase and separated by reversed-phase HPLC. Glycopeptides were detected by the 4-N,N-dimethylamino-4'-azobenzene sulfonyl hyrazide method. Sequence analyses of the glycopeptides showed that a carbohydrate chain attached to Asn-39.  相似文献   

14.
The human transferrin receptor (TfR) contains three N-linkedoligosaccharides and glycosylation is required for the properfolding and function of the molecule. Earlier studies demonstratedthat the oligosaccharide at Asn-727 is vital for the productionof fully active TfR. The oligosaccharide(s) present at thissite have been analysed using a combination of site-directedmutagenesis and chemical analysis. Wild-type TfR and mutantscontaining only the Asn-727 site or missing all three siteswere transfected into mouse 3T3 cells and receptors were analysedby endo-N-acetylglucosam-inidase H (Endo-H) digestion, SDS-PAGEand immuno-blotting. These studies suggested that the Asn-727site contains high-mannose or Endo-H-sensitive hybrid oligosaccharides.Glycosylation of Asn-727 found in the TfR purified from humanplacentae was analysed by high-pH anion-exchange chromatographywith pulsed amperometric detection (HPAE-PAD) and mass spectrometryfollowing tryptic digestion, peptide purification via reverse-phasehigh-performance liquid chromatography (RP-HPLC) and peptidesequencing. HPAE-PAD showed the presence of a series of high-mannoseoligosaccharides. Mass spectrometry confirmed these observations,but also showed the presence of an 80 Da anionic moiety on afraction of the oligosaccharides. characterization glycosylation site human oligosacharides transferrin receptor  相似文献   

15.
Phytohemagglutinin, the lectin of the common bean Phaseolus vulgaris, is a N-linked glycoprotein with one high-mannose-type and one xylose-containing oligosaccharide side chain per polypeptide. The high-mannose-type glycan is attached to Asn12 and the complex-type glycan to Asn60 [Sturm, A. & Chrispeels, M. J. (1986) Plant Physiol. 81, 320-322]. The structures of the oligosaccharides were elucidated from two glycopeptides obtained from the lectin by Pronase digestion, affinity chromatography on concanavalin-A--Sepharose and gel-filtration chromatography on a column of BioGel P-4. The N-linked glycan structures were investigated by 500-MHz 1H-NMR spectroscopy and were established to be: [formula; see text]  相似文献   

16.
This report describes the structure of novel complex-type Asn-linked oligosaccharides in glycoproteins synthesized by the human blood fluke, Schistosoma mansoni. Adult schistosome worm pairs (male and female) isolated from infected hamsters were metabolically radiolabelled with either [3H]glucosamine, [3H]mannose or [3H]galactose. The glycopeptides prepared by pronase digestion of the total glycoprotein fraction were isolated by affinity chromatography on columns of immobilized Concanavalin A (Con A) and Wisteria floribunda agglutinin (WFA). A subset of glycopeptides, designated IIb, that bound to both Con A and WFA was isolated. WFA has been shown to have affinity for oligosaccharides containing beta 1,4-linked N-acetylgalactosamine (GalNAc) at their non-reducing termini. Compositional analysis of IIb glycopeptides demonstrated that they contained N-acetylglucosamine (GlcNAc), GalNAc, mannose (Man) and fucose (Fuc), but no galactose (Gal) or N-acetylneuraminic acid (NeuAc). Methylation analyses and exoglycosidase digestions indicated that IIb glycopeptides were complex-type biantennary structures with branches containing the sequence GalNAc beta 1-4-[+/- Fuc alpha 1-3]GlcNAc beta 1-2Man alpha 1-R. The discovery of these unusual oligosaccharides synthesized by a human parasite, which appear to be similar to some newly discovered mammalian cell-derived oligosaccharides, may shed light on future studies related to the role oligosaccharides may play in host-parasite interactions.  相似文献   

17.
The posttranslational processing of the asparagine-linked oligosaccharide chain of the major myelin glycoprotein (P0) by Schwann cells was evaluated in the permanently transected, adult rat sciatic nerve, where there is no myelin assembly, and in the crush injured nerve, where there is myelin assembly. Pronase digestion of acrylamide gel slices containing the in vitro labeled [3H]mannose and [3H]fucose P0 after electrophoresis permitted analysis of the glycopeptides by lectin affinity and gel filtration chromatography. The concanavalin A-Separose profile of the [3H]mannose P0 glycopeptides from the transected nerve revealed the high-mannose-type oligosaccharide as the predominant species (72.9%), whereas the normally expressed P0 glycoprotein that is assembled into the myelin membrane in the crushed nerve contains 82.9-91.9% of the [3H]mannose radioactivity as the complex-type oligosaccharide chain. Electrophoretic analysis of immune precipitates verified the [3H]mannose as being incorporated into P0 for both the transected and crushed nerve. The high-mannose-type glycopeptides of the transected nerve isolated from the concanavalin A-Sepharose column were hydrolyzed by endo-beta-N-acetylglucosaminidase H, and the oligosaccharides were separated on Biogel P4. Man8GlcNAc and Man7GlcNAc were the predominant species with radioactivity ratios of 12.5/7.2/1.4/1.0 for the Man8, Man7, Man6, and Man5 oligosaccharides, respectively. Jack bean alpha-D-mannosidase gave the expected yields of free Man and ManGlcNAc from these high-mannose-type oligosaccharides. The data support the notion that at least two alpha-1,2-mannosidases are responsible for converting Man9GlcNAc2 to Man5GlcNAc2. The present experiments suggest distinct roles for each mannosidase and that the second mannosidase (I-B) may be an important rate-limiting step in the processing of this glycoprotein with the resulting accumulation of Man8GlcNAc2 and Man7GlcNAc2 intermediates. Pulse chase experiments, however, demonstrated further processing of this high-mannose-type oligosaccharide in the transected nerve. The [3H]mannose P0 glycoprotein with Mr of 27,700 having the predominant high-mannose-type oligosaccharide shifted its Mr to 28,500 with subsequent chase. This band at 28,500 was shown to have the complex-type oligosaccharide chain and to contain fucose attached to the core asparagine-linked GlcNAc residue. The extent of oligosaccharide processing of this down-regulated glycoprotein remains to be determined.  相似文献   

18.
The surface antigen of hepatitis B virus comprises a nested set of small (S), middle (M), and large (L) proteins, all of which are partially glycosylated in their S domains. The pre-S2 domain, present only in M and L proteins, is further N-glycosylated at Asn-4 exclusively in the M protein. Since the pre-S2 N-glycan appears to play a crucial role in the secretion of viral particles, the M protein may be considered as a potential target for antiviral therapy. For characterization of the pre-S2 glycosylation, pre-S2 (glyco)peptides were released from native, patient-derived hepatitis B virus subviral particles by tryptic digestion, separated from remaining particles, purified by reversed-phase high performance liquid chromatography, and identified by amino acid and N-terminal sequence analysis as well as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Pre-S2 N-glycans were characterized by anion exchange chromatography, methylation analysis, and on target sequential exoglycosidase digestions in combination with MALDI-TOF-MS, demonstrating the presence of partially sialylated diantennary complex-type oligosaccharides. In addition, the pre-S2 domain of M protein, but not that of L protein, was found to be partially O-glycosylated by a Gal(beta1-3)GalNAcalpha-, Neu5Ac(alpha2-3)Gal(beta1-3)GalNAcalpha-, or GalNAcalpha-residue. The respective O-glycosylation site was assigned to Thr-37 by digestion with carboxypeptidases in combination with MALDI-TOF-MS and by quadrupole time-of-flight electrospray mass spectrometry. Analytical data further revealed that about 90% of M protein is N-terminally acetylated.  相似文献   

19.
The major secretory ribonuclease (RNase) of human urine (RNase HUA) was isolated and sequenced by automatic Edman degradation and analysis of peptides and glycopeptides. The isolated enzyme was shown to be free of other urine RNase activities by SDS/polyacrylamide-gel electrophoresis and activity staining. It is a glycoprotein 128 amino acids long, differing from human pancreatic RNase in the presence of an additional threonine residue at the C-terminus. It differs from the pancreatic enzyme in its glycosylation pattern as well, and contains about 45 sugar residues. Each of the three Asn-Xaa-Ser/Thr sequences (Asn-34, Asn-76, Asn-88) is glycosylated with a complex-type oligosaccharide chain. Glycosylation at Asn-88 has not been observed previously in mammalian secretory RNases. Preliminary sequence data on the major RNase of human seminal plasma have revealed no difference between it and the major urinary enzyme; their similarities include the presence of threonine at the C-terminus. The glycosylation pattern of human seminal RNase is very similar to that of the pancreatic enzyme. The structural differences between the secretory RNases from human pancreas, urine and seminal plasma must originate from organ-specific post-translational modifications of the one primary gene product. Detailed characterization of peptides and the results of gel filtration of tryptic and tryptic/chymotryptic digests of performic acid-oxidized RNase have been deposited as Supplementary Publication SUP 50146 (4 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1988) 249, 5.  相似文献   

20.
The beta-subunit of dog kidney (Na+ + K+)-ATPase is a sialoglycoprotein and contains three potential N-glycosylation sites. In this study, the oligosaccharide chains of purified dog kidney beta-subunit were labeled with tritium by oxidation with sodium periodate or galactose oxidase followed by NaB3H4 reduction. The beta-subunit was extensively digested by trypsin and the radioactive peptides were purified by HPLC. The enzyme, glycopeptidase A, which catalyzes the removal of N-linked oligosaccharide chains and the conversion of the glycosylated Asn residue to Asp, was used to demonstrate that a number of purified beta-subunit tryptic peptides were glycosylated. Amino-acid analysis of these beta-subunit peptides following glycopeptidase-A treatment revealed the expected Asn to Asp conversion for Asn-157, Asn-192 and Asn-264, demonstrating that all three potential N-glycosylation sites of the dog kidney beta-subunit are glycosylated. In addition, amino-acid sequence data suggest that a disulfide bond exists between Cys-158 and Cys-174.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号