首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many Acropora palmata colonies consist of an encrusting basal portion and erect branches. Linear growth of the skeleton results in extension along the substrate (encrusting growth), lengthening of branches (axial growth) and thickening of branches and crust (radial growth). Scanning Electron Microscopy is used to compare the mechanisms of skeletal extension between encrusting growth and axial growth. In encrusting growth, the distal margin of the skeleton lacks corallites (which develop about 1 mm from the edge); in contrast, in axial growth, axial corallites along the branch tip form the distal portion of the skeleton. In both locations, the distal margin of the skeleton consists of a lattice-like structure composed of rods that extend from the body of the skeleton and bars that connect these rods. An actively extending skeleton is characterized by sharply pointed rods and partially developed bars. Distal growth of rods (and formation of bars) is effected by the formation of new sclerodermites. Each sclerodermite begins with the deposition of fusiform crystals (that range in length from 1 to 5 μm). These provide a surface for nucleation and growth of spherulitic tufts, clusters of short (<1 μm long) aragonite needles. The needles that are oriented perpendicular to the axis of the skeletal element (rod or bar), and perpendicular to the overlying calicoblastic epithelium, continue extension to appear on the surface of the skeleton as 10–15 μm wide bundles (of needle tips) called fasciculi. However, some crusts that abut competitors for space have a different morphology of skeletal elements (rods and bars). The distal edge of these crusts terminates in blunt coalescing rods, and bars that are fully formed. Absence of fusiform crystals, lack of sharply pointed rods and bars, and full development of sclerodermites characterize a skeletal region that has ceased, perhaps only temporarily, skeletal extension.  相似文献   

2.
Identification of fossil corals is often limited due to poor preservation of external skeleton morphology, especially in the genus Acropora which is widespread across the Indo‐Pacific. Based on skeleton characteristics from thin section, we here develop a link between the internal skeleton structure and external morphology. Ten characteristics were summarized to distinguish Acropora and five related genera, including the type and differentiation of corallites, the skeleton nature of corallites (septa, columellae, dissepiments, wall), and calcification centers within septa. Acropora is distinctive for its dimorphic corallites: axial and radial. Isopora is similar to Acropora but possess more than a single axial corallites. Montipora and Astreopora (family Acroporidae) have monomorphic corallites and a synapticular ring wall, with clustered calcification center in the former and medial lines in the latter. Pocillopora and Porties are classified by distinctive dissepiments, columellae and septa. These microstructural skeleton characteristics were effective in the genus identification of fossil corals from drilled cores in the South China Sea. Eighteen detailed characteristics (ten of axial corallites, four of radial corallites, and four of coenosteum) were used in the Acropora species classification. The axial corallites size and structure (including corallite diameter, synapticular rings, and septa), the septa of radial corallites, and the arrangement of coenosteum were critical indicators for species identification. This identification guide can help paleoenvironmental and paleoecological analyses and modern coral reef conservation and restoration.  相似文献   

3.
Micro-CT scanning techniques were used to investigate fine-scale variation in porosity along branch tips of Acropora pulchra. Porosity variation is a result of progressive thickening of skeletal elements away from the apical tip of branches, rather than changes in the spacing of skeletal elements. A linear fit was found to describe the relationship between distance along the tip and both porosity and skeletal thickness. The slope of the line obtained may relate to branch extension rates and allow retrospective data to be obtained from Acropora specimens. Skeletal morphology examined by 2D and 3D imaging shows a progressive gradation in thickness occurring in the axial corallite wall and thickness changes at a site of incipient branch formation. The application of the micro-CT technique to museum and fossil specimens is illustrated.  相似文献   

4.
Tabulate corals are common in reefs of the Silurian (Wenlockian) Racine Formation in Wisconsin and Illinois, North America. Variation in size and spacing of corallites in this fauna represents an aspect of niche-partitioning that is probably related to feeding. Corallite morphospace, represented by a plot of corallite diameter versus number of corallites per square cm, is characteristically partitioned among favositines, alveolitines, halysitines, syringoporids, and heliolitines, usually with minimal overlap between these major taxonomic groups. Within all groups except alveolitines, morphospace occupied by each major taxon is partitioned further between forms with small corallites and forms with larger corallites. This is probably related to differences in feeding, with ­larger corallite forms specializing in tentacular capture of larger prey, and smaller ­corallite forms specializing in smaller prey involving capture by cilia-directed sheets of mucus as well as by tentacles. Feeding-based differences among tabulates augmented niche-partitioning effected by colony form and relation to substrate. Cerioid, cateniform, coenenchymal, and fasciculate colony types in the Racine fauna were primarily adapted to a soft substrate. Ragged edges of colonies indicate growth during episodic sedimentation, and colonies were partially buried during life. Most tabulates are ­scattered through wackestone and packstone and were not major contributors to reef growth.  相似文献   

5.
Based on detailed study of transverse serial sections, we recognize various modes of corallite increase in a multichain cateniform coral, Manipora amicarum from the Selkirk Member, Red River Formation, in Manitoba. One type of axial increase and four types of lateral increase involve normal, undamaged corallites, and one type of axial increase and one type of lateral increase occur during recovery processes of corallites damaged by sediment or bioclast influx. All but one of these types of increase are comparable to those in a single‐chain coral, Catenipora foerstei, which we previously documented from the same stratigraphic unit and locality. In M. amicarum, the formation of double ranks and agglutinated patches of corallites by normal corallites, and by recovery processes following corallite damage, is common and presumably genetically controlled. Agglutinated patches originate differently in C. foerstei, occurring sporadically or temporarily in only some coralla. Average annual vertical corallum growth in M. amicarum, as indicated by cyclic fluctuations of tabularial area, is higher than in C. foerstei, which has comparatively smaller corallites. In general, annual growth in M. amicarum is positively correlated with average tabularial area, negatively correlated with frequency of damaged corallites, and is not related to the frequency of corallite increase. In C. foerstei, however, there is a positive association between annual growth rate and the frequency of increase by damaged corallites, related to episodes of sediment or bioclast influx probably generated by storms. In comparison with C. foerstei, M. amicarum has a low frequency of corallite termination and extensive partial mortality is rare. It seems that the relatively rapid overall vertical corallum growth in M. amicarum was effective for protecting the coral from unfavourable situations, possibly by maintaining the growth surface higher above the substrate than in C. foerstei. Although these two species show many similarities in the types of corallite increase, their reactions and strategies in relation to physical disturbance were quite different.  相似文献   

6.
Protoheliolites is an early heliolitine coral characterized by closely spaced corallites separated in places by sparse coenenchyme. Growth characteristics in the type species, P. norvegicus, are revealed by detailed analysis based on serial peels and thin sections of coralla from the uppermost Katian of north‐western Estonia. Colonies of this species had a strong ability to recover from damage and partial mortality, resulting in various forms of rejuvenation, regeneration, fusion and reorganization of corallites; in some cases, this involved relatively large areas of undifferentiated soft parts. The shells of commensal cornulitids became enclosed in host coralla during colony growth. Coralla of P. norvegicus exhibit distinctive growth cycles due to responses to seasonal changes. The production of new corallites by coenenchymal increase usually occurred in low‐density bands, in which corallites generally display round to subrounded transverse outlines. In high‐density bands, the corallites became crenulated, their wall thickness increased, septal development was more pronounced, and the amount of coenenchyme increased. In addition to these cyclomorphic changes, there were significant astogenetic changes during growth. Compared with the early stage of colony development, distinctive characteristics in the late astogenetic stage include a decrease in the growth rate of the colony, better coordination among corallites, maximum development of corallite crenulations and septa in high‐density bands, more numerous coenenchymal tubules and a greater proportion of corallum area occupied by coenenchyme. In general, the role of polyps in determining morphological characteristics of individual corallites, such as tabularium area, corallite crenulations and wall thickness, was subordinate to the astogeny of the colony. Growth characteristics including colony‐wide coordination of polyp behaviour and subjugation of individuals to restore the colony following damage suggest a strong astogenetic control and high level of colony integration. Protoheliolites probably arose from a heliolitine genus rather than from a nonheliolitine group as some authors have proposed.  相似文献   

7.
Scleractinia exhibit a variety of growth forms, whether zooxanthellate or azooxanthellate, according to factors that control asexual reproduction and ensuing coral growth. The azooxanthellate branching scleractinian Dendrophyllia arbuscula shows regular modes of budding in terms of the locations of budding sites, the orientations of directive septa, and the inclination angle of budding throughout colonial growth. This study reports that such regularities are also found in the apparently different growth form of the massive dendrophylliid Tubastraea coccinea, which shows the following growth features: (1) the offsets (lateral corallites) always occur near four primary septa, except the two directive primary septa, meaning that the lateral corallites do not appear in the sectors of the two directive septa; (2) the two directive septa in lateral corallites tend to be oriented subperpendicular to the growth direction of the parental corallites; (3) the lateral corallites grow approximately diagonally upwards; and (4) these regularities are seen in the axial and derived lateral corallites among all generations during colony growth. Large differences in growth form are found between the branching D. arbuscula and massive T. coccinea, irrespective of the presence of specific regularities. It is likely that subtle modifications of certain parameters (e.g., budding interval, branch length, corallite size, and inclination angle of lateral corallites) have a strong effect on the overall growth morphology. A precise understanding of such regularities, which occur regardless of generation or taxonomic position, would contribute to understanding the “shape-controlling mechanism” of corals, which are an archetypal modular organism.  相似文献   

8.
The skeleton morphology of the azooxanthellate cold-water coral Lophelia pertusa can be strongly influenced by invasive boring sponges that infest corallites in the still living part of the colony. Atypically swollen corallites of live Lophelia pertusa from the Galway Mound (Belgica Carbonate Mound Province, Porcupine Seabight, NE Atlantic), heavily excavated by boring organisms, have been examined with a wide range of non-destructive and destructive methods: micro-computed tomography, macro- and microscopic observations of the outer coral skeleton, longitudinal and transversal thin sections and SEM analyses of coral skeleton casts. As a result, three excavating sponge species have been distinguished within the coral skeleton: Alectona millari, Spiroxya heteroclita and Aka infesta. Furthermore, four main coral/sponge growth stages have been recognised: (1) cylindrical juvenile corallite/no sponge cavities; (2) flared juvenile corallite/linear sponge cavities (if present); (3) slightly swollen adult corallites/chambered oval sponge cavities; (4) very swollen adult corallites/widespread cavities. The inferred correlation between corallite morphology and boring sponge infestation has been detected in micro-computed tomography (micro-CT) images and confirmed in sponge trace casts and peculiar features of coral skeleton microstructure. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

9.
Detailed study of coralla by transverse serial sections permits the determination and evaluation of life-history strategies (survival and growth characteristics) in response to different physical environments, for Catenipora foerstei Nelson, 1963 from the Selkirk Member, Red River Formation, in Manitoba. We recognize various modes of corallite increase: one type of axial increase, four types of lateral increase, and agglutinated patches of corallites in association with normal, undamaged corallites; and one type of axial increase, one type of lateral increase, and temporary agglutinated patches from the recovery processes of corallites damaged by sediment or bioclast influx. In addition, the formation of new ranks by lateral increase is the most effective method for rapid growth of a corallum or for reconstructing part of a corallum damaged by physical disturbances. Fluctuations in the tabularial area of corallites occur in cycles over vertical intervals ranging from 3.20-7.90 mm. We consider each cycle to represent annual growth. Average annual growth of the three coralla ranges from 4.20-6.27 mm. According to correlations between annual growth cycles and other growth characteristics, a high frequency of offsetting is associated with rapid vertical growth. Specifically, annual growth is relatively high in association with episodes of sediment or bioclast influx, probably generated by storms. In some coralla, however, annual growth is highest in the cycle characterized by few new corallites or by extraordinarily high rates of offsetting by normal, undamaged corallites as well as damaged corallites. This suggests that vertical growth could also be affected by factors other than storm-related disturbance.  相似文献   

10.
Y. Ezaki  & Y. Yasuhara 《Palaeontology》2004,47(5):1075-1091
New modules arise in colonial corals as the result of asexual reproduction. The Silurian rugosan Stauria favosa ordinarily exhibits cerioid coralla with a characteristic cross-shaped axial structure and a typical pattern of parricidal increase. Quadripartite increase at the sites of the four protosepta is most common, whereas cases of tripartite increase are rare. Parental protosepta are transformed into dividing walls, where the four protosepta first appear with a definite polarity in offset corallites. Daughter corallites inherit metasepta as metasepta, and catasepta as catasepta, within the same quadrants as those of the parent. Metasepta are inserted serially, following Kunth's rule, as is characteristic of rugosan protocorallites. As each daughter corallite derived immediately from the same parent is arranged with identical polarity, it grows equally and evenly both individually and as a group. Daughters thus form protosepta and metasepta under strict phylogenetic and developmental constraints. However, individual corallites grow and reproduce autonomously, by using all available skeleton and space of the parent. Although each module cannot modify essential modes of division, flexibility of the system was via changes in the density and arrangement of corallites, and regulating modes of growth, in tandem with adjacent corallites within the corallum. It is probable that regularity, due to constraints of several origins, as well as flexibility are typical of other rugosan colonies and played an important role in growth dynamics between corallites and corallum.  相似文献   

11.
An exceptionally well‐preserved, unusual biostrome composed of the framebuilding cateniform tabulate coral Halysites catenularius (Linnaeus, 1767) bears an assemblage of the relatively large solitary cystiphyllid rugosan Cystiphyllum visbyense Wedekind, 1927. The corallites of solitary cystiphyllids are embedded within the ranks of the halysitid colonies, which developed on a soft, muddy substrate and in relatively turbid water. The cystiphyllid larvae successively settled mostly on the ranks of halysitid colonies and on colonies of the tiny phaceloid rugose coral Nanophyllum ramosum Johannessen, 1995, whereas calice‐in‐calice recruitment was not successful for these cystiphyllid corals. Further growth of C. visbyense was supported by rhizoid structures, which were most frequently developed on the cardinal (convex) side of the corallite. The process of formation of the rhizoid structures is here discussed and explained in detail, showing that they were formed by the extension of the basal ectodermal tissue of the polyp. The cystiphyllids, which settled on the walls of living corallites of halysitid colonies, used sweeper tentacles to kill the smaller polyps of the colony to maintain the space around them and expand. Hence, they ultimately used the halysitid colonies only as a hard substrate to stabilize their position on the soft muddy sediment.  相似文献   

12.
Extreme variability in the size, shape and spacing of skeletal spines ofPocillopora damicornis has been demonstrated both within single colonies and also between colonies from different environments. Preliminary studies indicated that the majority of spines from branch tips at the apex of the colony display a ‘fasciculate’ growth surface in contrast to partly fasciculate or ‘smooth’ growth surfaces exhibited by spines from branch tips at the base of the colony. No significant differences in the height and width of costal spines from apical and basal branch tips within a single colony were observed, although spines from colonies exposed to strong wave action tended to be significantly shorter and narrower than those from more sheltered environments. Both costal and coenosteal spines from wave-exposed colonies displayed branching and divided extremities while those from sheltered environments consisted of simple cones. Spines develop as an outgrowing of the calicoblastic ectoderm which secretes the skeleton. Growing costal and coenosteal spines are enveloped by a layer of calicoblastic ectoderm which penetrates through mesogloea, aboral gastroderm, coelenteron, oral gastroderm, mesogloea and finally oral ectoderm. Spines within the corallite are surrounded by calicoblastic ectoderm, mesogloea and aboral gastroderm only. A scheme for the growth of the spines is discussed.  相似文献   

13.
Sentoku, A. & Ezaki, Y. 2012: Regularity and polarity in budding of the colonial scleractinian Dendrophyllia ehrenbergiana: consequences of radio‐bilateral symmetry of the scleractinian body plan. Lethaia, Vol. 45, pp. 586–593. Regularities and polarity in budding of the azooxanthellate scleractinian Dendrophyllia ehrenbergiana were examined with the aim of understanding the developmental constraints on the formation of colonies. Its mode of budding, in light of the orientations of directive septa of offsets and the inclination angle of budding, is consistent with that of other dendrophyllids; however, the offsets of D. ehrenbergiana only occur near the two primary septa on the convex side of individual corallites, showing a plane of bilateral symmetry with a distinct polarity. These regularities and polarity are seen in the axial and its derived corallites throughout growth. Of note, the polarity at individual corallites is clearly reflected in subsequent colony growth by the branching pattern and corallite number. These characteristics imply the presence of radio‐bilateral symmetrical constraints on the asexual reproduction of the Scleractinia and give us invaluable clues to the understanding of shape‐making mechanisms of marine modular organisms. □Asexual reproduction, azooxanthellate coral, budding, colony, Dendrophyllia ehrenbergiana, polarity.  相似文献   

14.
Using in situ (12 h) pulse-labeling of scleractinian coral aragonitic skeleton with stable 86Sr isotope, the diel pattern of skeletal extension was investigated in the massive Porites lobata species, grown at 5 m depth in the Gulf of Eilat. Several microstructural aspects of coral biomineralization were elucidated, among which the most significant is simultaneous extension of the two basic microstructural components Rapid Accretion Deposits (RAD; also called Centers of Calcification) and Thickening Deposits (TD; also called fibers), both at night and during daytime. Increased thickness of the 86Sr-labeled growth-front in the RADs compared to the adjacent TDs revealed that in this species RADs extend on average twice as fast as TDs. At the level of the individual corallite, skeletal extension is spatially highly heterogeneous, with sporadic slowing or cessation depending on growth directions and skeletal structure morphology. Daytime photosynthesis by symbiotic dinoflagellates is widely acknowledged to substantially increase calcification rates at the colony and the corallite level in reef-building corals. However, in our study, the average night-time extension rate (visualized in three successive 12 h pulses) was similar to the average daytime extension (visualized in the initial 12 h pulse), in all growth directions and skeletal structures. This research provides a platform for further investigations into the temporal calibration of coral skeletal extension via cyclic growth increment deposition, which is a hallmark of coral biomineralization.  相似文献   

15.
Mass transfer characteristics of scleractinian corals are affected by their skeletal morphology and the concentration gradients that develop as a consequence of the interactions of their morphology and biomass with the overlying seawater. These interactions can have a profound effect on coral metabolism. In this study, boundary layer characteristics were compared between different size colonies of the corals Dichocoenia stokesii and Stephanocoenia michilini to determine the relative roles of colony size and corallite structures (i.e. surface roughness) in mass transfer. Colonies of both species were rounded in shape, but differed in small-scale roughness as measured by the elevation of corallites. Additionally, D. stokesii had a greater aspect ratio than S. michilini, and their colonies were slightly taller for a given diameter. Boundary layers were characterized by placing dead coral skeletons in a flow tank and estimating shear velocities (u(*)) at different flow speeds. The effects of flow speed, size, and roughness on shear velocities were estimated for two juvenile size classes (10-20 and 30-40 mm diameter) of each species that were exposed to unidirectional flow regimes (4 and 17 cm s(-1)). Shear velocities were significantly greater in high, compared to low flow, and there was a significant interaction between colony size and surface roughness; the interaction was caused by a difference in magnitude, rather than direction, of the effect of roughness and size on u(*). Thus, there was a greater degree of turbulence at high flow compared to low flow, regardless of roughness or size, and the greatest turbulence occurred over large colonies of D. stokesii at high flow. Together, these results suggest that boundary layers around small corals are heavily influenced by upstream roughness elements, and more strongly affected by flow regimes than skeletal features. The relationship between colony morphology (i.e. aspect ratio and, possibly, surface roughness) and boundary layer characteristics may be non-linear in small corals.  相似文献   

16.
Middle Devonian heliolitids and favositids from Central Bohemia, belonging to Heliolites 'intermedius' LeMaitre and Favosites goldfussi Orbigny , incorporated ostracode shells within their living corallite structures. The ostracode shells were sealed in by skeletal tissue that was septal in origin (Heliolites) or they were roofed over by tabulae (Favosites). The foreign shell was near the axis of the polyp when trapped within the coral skeleton. Only ostracodes, not other rounded shells or sedimentary particles, were trapped in this way. Approximately one in 30 favositid corallites and one in 70 heliolitid corallites display this peculiar condition, where the ostracode shells seem to have been swallowed by the polyps. A probable scenario involves the injury of the mouth area and the trapping of the ostracodes. A high probability that the basal part of the polyp experienced a controlled penetration is the most striking part of the process. □ Favositids, heliolitids, ostracodes, coral growth violence, behavior, Middle Devonian, Bohemia.  相似文献   

17.
Four species of the tabulate coral Catenipora are present in the Selkirk Member of the Red River Formation at Garson, Manitoba. They provide an opportunity to compare the growth characteristics of multiple, co‐occurring species that produced cateniform coralla. Corallite increase, cyclomorphism and other growth features show high variability within and/or among the species. A total of five types of lateral increase and two types of axial increase are recognized. Lateral increase accounts for over 80% of all occurrences of corallite increase in each species, with the four species differing significantly in the relative frequency of the various types of lateral increase. The type of axial increase, megacorallites and agglutinated patches of corallites that developed from normal, undamaged corallites in C. foerstei are species specific. In all species, cyclic fluctuations in the tabularial area of corallites are considered to be annual, and the variable growth rates within colonies and species are attributed to differences in astogenetic stages or environmental conditions. Average annual vertical growth was positively correlated with average tabularial area in C. foerstei, C. cf. robusta and C. rubra. Catenipora cf. agglomeratiformis, however, which had the lowest average tabularial area and greatest sensitivity to sediment influx, had a high average growth rate comparable to that of C. rubra, which had the largest average tabularial area. The formation of ranks or lacunae by certain types of lateral increase seems to have been the most effective strategy for maintaining and/or expanding the colony growth surface in all four species, and was most common in C. cf. agglomeratiformis. A reptant growth pattern, characterized by creeping ranks, permitted effective recovery of damaged parts as well as quick formation of new ranks or lacunae. The growth surface of these species was situated near the sediment–water interface. □Growth characteristics, intraspecific variation, interspecific variation, palaeobiology, tabulate corals.  相似文献   

18.
Coral reef restoration methods such as coral gardening are becoming increasingly considered as viable options to mitigate reef degradation and enhance recovery of depleted coral populations. In this study, we describe several aspects of the coral gardening approach that demonstrate this methodology is an effective way of propagating the threatened Caribbean staghorn coral Acropora cervicornis: (1) the growth of colonies within the nursery exceeded the growth rates of wild staghorn colonies in the same region; (2) the collection of branch tips did not result in any further mortality to the donor colonies beyond the coral removed for transplantation; (3) decreases in linear extension of the donor branches were only temporary and donor branches grew faster than control branches after an initial recovery period of approximately 3–6 weeks; (4) fragmentation did not affect the growth rates of non-donor branches within the same colony; (5) small branch tips experienced initial mortality due to handling and transportation but surviving tips grew well over time; and (6) when the growth of the branch tips is added to the regrowth of the fragmented donor branches, the new coral produced was 1.4–1.8 times more than new growth in undisturbed colonies. Based on these results, the collection of small (2.5–3.5 cm) branch tips was an effective propagation method for this branching coral species resulting in increased biomass accumulation and limited damage to parental stocks.  相似文献   

19.
Measurements of the skeletal extension rate of branches of the reef coral Pocillopora damicornis showed that the linear extension rate is independent of colony size for colonies from 1.9 to 19 cm in diameter. Analysis of existing data from Western Australia, Samoa, the Great Barrier Reef and Hawaii supports the finding that linear extension is not related to colony size in this species.  相似文献   

20.
The deposition of four crystal types at the growth surface of the septa of several color morphs of the coral Galaxea fascicularis was investigated over a 24-h period. Results suggest that nanocrystals, on denticles at the apices of exsert septa, may be the surface manifestation of centers of calcification. These crystals were also found on the septa of the axial corallite of Acropora formosa. The deposition of nanocrystals appears to be independent of diurnal rhythms. Internally and proximal to the septal apices, distinct clusters of polycrystalline fibers originate from centers of calcification and form fanlike fascicles. Upon these fascicles, acicular crystals grow and extend to form the visible fasciculi at the skeletal surface. Deposition of aragonitic fusiform crystals in both G. fascicularis and A. formosa occurs without diurnal rhythm. Nucleation of fusiform crystals appears to be independent of centers of calcification and may occur by secondary nucleation. Formation of semi-solid masses by fusiform crystals suggests that the crystals may play a structural role in septal extension. Lamellar crystals, which have not been reported as a component of scleractinian coral skeletons before, possess distinct layers of polyhedral plates, although these layers also do not appear to be associated with daily growth increments. The relationship of lamellar crystals to other components of the scleractinian coral skeleton and their involvement in skeletal growth is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号