首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 36 kDa fragment of rabbit skeletal muscle actin resistant to further proteolytic breakdown was obtained with a new bacterial protease. This fragment was the only cleavage product obtained from native actin whereas proteolysis of heat-inactivated actin was unlimited. The 36 kDa fragment failed to polymerize and to inhibit DNase I activity. Binding to DNase I protects actin against proteolysis by protease. The results on actin proteolysis by different proteases are compared.  相似文献   

2.
Bacillus cereus MCM B-326, isolated from buffalo hide, produced an extracellular protease. Maximum protease production occurred (126.87+/-1.32 U ml(-1)) in starch soybean meal medium of pH 9.0, at 30 degrees C, under shake culture condition, with 2.8 x 10(8) cells ml(-1) as initial inoculum density, at 36 h. Ammonium sulphate precipitate of the enzyme was stable over a temperature range of 25-65 degrees C and pH 6-12, with maximum activity at 55 degrees C and pH 9.0. The enzyme required Ca(2+) ions for its production but not for activity and/or stability. The partially purified enzyme exhibited multiple proteases of molecular weight 45 kDa and 36 kDa. The enzyme could be effectively used to remove hair from buffalo hide indicating its potential in leather processing industry.  相似文献   

3.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

4.
An intracellular serine protease produced by Thermoplasma (Tp.) volcanium was purified using a combination of ammonium sulfate fractionation, ion exchange, and alpha-casein agarose affinity chromatography. This enzyme exhibited the highest activity and stability at pH 7.0, and at 50 degrees C. The purifed enzyme hydrolyzed synthetic peptides preferentially at the carboxy terminus of phenylalanine or leucine and was almost completely inhibited by PMSF, TPCK, and chymostatin, similarly to a chymotrypsin-like serine protease. Kinetic analysis of the Tp. volcanium protease reaction performed using N-succinyl-L-phenylalanine-p-nitroanilide as substrate revealed a Km value of 2.2 mM and a Vmax value of 0.045 micromol(-1) ml(-1) min(-1). Peptide hydrolyzing activity was enhanced by >2-fold in the presence of Ca2+ and Mg2+ at 2-12 mM concentration. The serine protease is a monomer with a molecular weight of 42 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram activity staining.  相似文献   

5.
An isolate of Streptomyces tendae produced a extracellular protease which was purified to apparent homogeneity giving a single band on SDS-PAGE with a molecular mass of 21 kDa. Optimum activity was at 70 degrees C and pH 6. It was stable at 55 degrees C for 30 min and between pH 4 and 9. It was resistant to neutral detergents and organic solvents such as Triton X-100, Tween 80, methanol, ethanol, acetone, and 2-propanol at 5% (v/v). The enzyme was completely inhibited by 5 mM PMSF, indicating it to be a serine protease. N-terminal amino acid sequence did not show any homology with other known proteolytic enzymes. The protease may therefore be a novel neutral serine protease, which is stable at high temperature and over a broad range of pH.  相似文献   

6.
This study describes the characterization of 80 kDa protease showing gelationlytic property among three proteases in the excretory/secretory proteins (ESP) from Toxoplasma gondii. The protease activity was detected in the ESP but not in the somatic extract of RH tachyzoites. This protease was active only in the presence of calcium ion but not other divalent cationic ions such as Cu(2+), Zn(2+), Mg(2+), and Mn(2+), implying that Ca(2+) is critical factor for the activation of the protease. The 80 kDa protease was optimally active at pH 7.5. Its gelatinolytic activity was maximal at 37 degrees C, and significant level of enzyme activity of the protease remained after heat treatment at 56 degrees C for 30 min or 100 degrees C for 10 min. This thermostable enzyme was strongly inhibited by metal chelators, i.e., EDTA, EGTA, and 1,10- phenanthroline. Thus, the 80 kDa protease in the ESP secreted by T. gondii was classified as a calcium dependent neutral metalloprotease.  相似文献   

7.
Myofibril-bound serine protease (MBSP) from lizard fish (SAURIDA UNDOSQUAMIS: Synodontidae) skeletal muscle was purified to homogeneity with higher purification (1260-fold) and higher recovery (7%) than our previous report in lizard fish (Saurida wanieso). The new purification method combines a heat-treatment for dissociation from washed myofibrils, acid-treatment at pH 5.0 before and after lyophilization, and alcohol-treatment, followed by two column chromatographies. The molecular mass of the enzyme was estimated to be 50 kDa under non-reducing conditions and 28 kDa under reducing conditions by SDS-PAGE. The N-terminal amino acid sequence of the MBSP was determined to be 22 residues (IVGGYEXEAYSKPYQVSINLGY) and the sequence showed high homology to carp and other fish trypsins (64-77%), but did not show high homology to carp MBSP (41%). The enzyme activity was inhibited by serine protease inhibitors such as Pefabloc SC, leupeptin, TLCK and native protein inhibitors (soybean trypsin inhibitor, alpha(1)-antitrypsin and aprotinin). The purified enzyme specifically hydrolyzed at the carboxyl side of the arginine residue of synthetic 4-methyl-coumaryl-7-amide substrate. When purified MBSP was stored at -35 degrees C in the presence of 50% ethylene glycol (V/V), the enzyme activity was entirely preserved over 6 months and stable against freezing and thawing. Activities for both casein and the synthetic substrate were most active at pH 9.0, and the enzyme was most active approximately 55 degrees C with casein and between 35 and 45 degrees C for synthetic substrate. When myofibrils were incubated with purified MBSP, myosin heavy chain was mostly degraded approximately 55 degrees C, but the degradation of actin was very slow.  相似文献   

8.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

9.
An endopeptidase (Cudrania protease) with a molecular mass of 76 kDa has been purified from the fruits of Cudrania cochinchinensis (Lour.) Kudo et Masam. The enzyme was stable between pH 6 and 10 at 30 degrees C for 60 min. The enzyme activity was inhibited by diisopropyl fluorophosphate, chymostatin, and aprotinin, but not by EDTA or pepstatin. These results indicated that the enzyme was a serine protease.  相似文献   

10.
A microorganism hydrolyzing carboxymethyl cellulose was isolated from a paddy field and identified as Bacillus sp. Production of cellulase by this bacterium was found to be optimal at pH 6.5, 37 degrees C and 150 rpm of shaking. This cellulase was purified to homogeneity by the combination of ammonium sulphate precipitation, DEAE cellulose, and sephadex G-75 gel filtration chromatography. The cellulase was purified up to 14.5 fold and had a specific activity of 246 U/mg protein. The enzyme was a monomeric cellulase with a relative molecular mass of 58 kDa, as determined by SDS-PAGE. The enzyme exhibited its optimal activity at 50 degrees C and pH 6.0. The enzyme was stable in the pH range of 5.0 to 7.0 and its stability was maintained for 30 min at 50 degrees C and its activity got inhibited by Hg2+, Cu2+, Zn2+, Mg2+, Na2+, and Ca2+.  相似文献   

11.
A collagenase in the culture supernatant of B. subtilis FS-2, isolated from traditional fish sauce, was purified. The enzyme had a molecular mass of about 125 kDa. It degraded gelatin with maximum activity at pH 9 and a temperature of 50 degrees C. The purified enzyme was stable over a wide range of pH (5-10) and lost only 15% and 35% activity after incubation at 60 degrees C and 65 degrees C for 30 min, respectively. Slightly inhibited by EDTA, soybean tripsin inhibitor, iodoacetamide, and iodoacetic acid, the enzyme was severely inhibited by 2-beta-mercaptoethanol and DFP. The protease from B. subtilis FS-2 culture digested acid casein into fragments with hydrophilic and hydrophobic amino acids as C-terminals, in particular Asn, Gly, Val, and Ile.  相似文献   

12.
Fibrinolytic and antithrombotic protease from Spirodela polyrhiza   总被引:1,自引:0,他引:1  
A fibrinolytic protease was purified from a Chinese herb (Spirodela polyrhiza). The protease has a molecular mass of 145 kDa and 70 kDa in gel filtration and SDS-polyacrlamide gel electrophoresis (PAGE), respectively, implying it is a dimer. Its optimum pH was 4.5-5.0. The enzyme was stable below 42 degrees C and after lyophilization. The enzyme activity was inhibited significantly by leupeptin and aprotinin. The protease hydrolyzed not only fibrin but also fibrinogen, cleaving Aalpha and Bbeta without affecting the gamma chain of fibrinogen. It preferentially cleaved the peptide bond of Arg or Lys of synthetic substrates (P1 position). The enzyme had an anticoagulating activity measured with activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) tests. It delayed APTT, TT, and PT two times at the concentration of 36, 39, and 128 nM, respectively and this was drastically reduced after heat treatment.  相似文献   

13.
A protease secreted in Bacillus pumilus KMM 62 culture liquid on different growth stages was isolated using ion-exchange chromatography. On the basis of pattern of specific chromogenic substrates hydrolysis and inhibitory analysis the protease was classified as subtilisin like serine protease. The molecular weight ofprotease is 31 kDa. Proteolytic activity towards Z-Ala-Ala-Leu-pNa substrate was maximal at pH 8-8.5. The optimal temperature for proteolytic activity was observed at a temperature of 30 degrees C, and the protein was stable within the pH range of 7.5-10.0. Bacillus pumilus KMM 62 subtilisin like serine protease was shown to have thrombolytic activity.  相似文献   

14.
Thermostable protease is very effective to improve the industrial processes in many fields. Two thermostable extracellular proteases from the culture supernatant of the thermophilic fungus Chaetomium thermophilum were purified to homogeneity by fractional ammonium sulfate precipitation, ion-exchange chromatography on DEAE-Sepharose, and PhenylSepharose hydrophobic interaction chromatography. By SDS-PAGE, the molecular mass of the two purified enzymes was estimated to be 33 kDa and 63 kDa, respectively. The two proteases were found to be inhibited by PMSF, but not by iodoacetamide and EDTA. The 33 kDa protease (PRO33) exhibited maximal activity at pH 10.0 and the 63 kDa protease (PRO63) at pH 5.0. The optimum temperature for the two proteases was 65 degrees C. The PRO33 had a K(m) value of 6.6 mM and a V(max) value of 10.31 micromol/l/min, and PRO63 17.6 mM and 9.08 micromol/l/min, with casein as substrate. They were thermostable at 60 degrees C. The protease activity of PRO33 and PRO63 remained at 67.2% and 17.31%, respectively, after incubation at 70 degrees C for 1 h. The thermal stability of the two enzymes was significantly enhanced by Ca2+. The residual activity of PRO33 and PRO63 at 70 degrees C after 60 min was approximately 88.59% and 39.2%, respectively, when kept in the buffer containing Ca2+. These properties make them applicable for many biotechnological purposes.  相似文献   

15.
The purification method for a novel ginsenoside-hydrolyzing beta-glucosidase from Paecilomyces Bainier sp. 229 was successfully simplified by the application of microcrystalline cellulose (MCC) as a novel chromatographic matrix. Only two chromatographic steps, Q-Sepharose FF and MCC column in sequence, were required to purify the enzyme to apparent homogeneity. The purified enzyme, with a native molecular weight estimated to be 305 KDa, was composed of three identical subunits of approximately 102 KDa each. The optimal enzyme activity was observed at pH 3.5 at 55 degrees C. It was stable within pH 3-7 and at temperatures lower than 50 degrees C. The optimal substrate for the enzyme was p-nitrophenyl-beta-D-glucoside, followed by ginsenoside Rd, gentiobiose, and ginsenoside Rb1. It converted ginsenoside Rb1 to ginsenoside Rg3 specifically and efficiently. The hydrolyzing pathway of ginsenoside Rb1 by the enzyme was Rb1-->Rd-->Rg3. The specific activities against ginsenoside Rb1 and Rd were 56.7 micromol/min/mg and 129.4 micromol/min/mg respectively.  相似文献   

16.
A new protease named NJP with fibrinolytic activity was isolated from Neanthes japonica (Izuka), by a combination of ammonium sulfate fractionation, hydrophobic chromatography, ion-exchange chromatography and gel filtration. The molecular mass of NJP was approximately 28.6-33.5kDa as estimated by MALDI-TOF mass spectrometry and SDS-PAGE, which revealed a monomeric form of the protease. The isoelectric point of NJP determined by 2-DE was 9.2. NJP was stable in the range of pH 7.0-11.0 with a maximum enzymatic activity at 40°C and pH 9.0. The hydrolyzing activity of NJP on fibrinogen started from the Aα-chain, followed by the Bβ-chain, and the γ-chain at last. NJP had also a higher specificity for the chromogenic substrate S-2238 for thrombin. NJP activity was completely inhibited by PMSF. Analysis of partial amino acid sequences showed that NJP had very low homology with other known fibrinolytic enzymes. These results indicate that NJP is a novel alkaline thrombin-like serine protease. Thus NJP may have potential applications in the prevention and treatment of thrombosis.  相似文献   

17.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

18.
The exoprotease from Oenococcus oeni produced in stress conditions was purified to homogeneity in two steps, a 14-fold increase of specific activity and a 44% recovery of proteinase activity. The molecular mass was estimated to be 33.1 kDa by gel filtration and 17 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These results suggest that the enzyme is a dimer consisting of two identical subunits. Optimal conditions for activity on grape juice were 25 degrees C and a pH of 4.5. Incubation at 70 degrees C, 15 min, destroyed proteolytic activity. The SDS-PAGE profile shows that the enzyme was able to degrade the grape juice proteins at a significantly high rate. The activity at low pH and pepstatin A inhibition indicate that this enzyme is an aspartic protease. The protease activity increases at acidic pH suggesting that it could be involved in the wine elaboration.  相似文献   

19.
A metalloprotease secreted by the moderately halophilic bacterium Salinivibrio sp. strain AF-2004 when the culture reached the stationary growth phase. This enzyme was purified to homogeneity by acetone precipitation and subsequent Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography. The apparent molecular mass of the protease was 31 kDa by SDS-PAGE, whereas it was estimated as approximately 29 kDa by Sephacryl S-200 gel filtration. The purified protease had a specific activity of 116.8 mumol of tyrosine/min per mg protein on casein. The optimum temperature and salinity of the enzyme were at 55 degrees C and 0-0.5 M NaCl, although at salinities up to 4 M NaCl activity still remained. The protease was stable and had a broad pH profile (5.0-10.0) with an optimum of 8.5 for casein hydrolysis. The enzyme was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), Pefabloc SC, chymostatin and also EDTA, indicating that it belongs to the class of serine metalloproteases. The protease in solutions containing water-soluble organic solvents or alcohols was more stable than that in the absence of organic solvents. These characteristics make it an ideal choice for applications in industrial processes containing organic solvents and/or salts.  相似文献   

20.
Pseudomonas fluorescens RO98, a raw milk isolate, was inoculated into McKellar's minimal salts medium and incubated at 25 degrees C for 48 h to allow production of protease. A zinc-metalloacid protease was purified from the cell-free concentrate by anion exchange and gel filtration chromatography. The purified protease was active between 15 and 55 degrees C, and pH 4.5 and 9.0, and was stable to pasteurization. The enzyme had pH and temperature optima for activity of 5.0 and 35 degrees C, respectively. It was heat stable with a D55 of 41 min and a D62.5 of 18 h. Molecular weight of the enzyme was estimated to be 52 kDa by SDS PAGE and size exclusion chromatography. Values for kM of 144.28, 18.73, 110.20 and 35.23 micromol were obtained for whole, alpha-, beta- and kappa-casein, with a Vmax of 8.26, 0.09, 0.42 and 0.70 micromol mg-1 min-1, respectively. The enzyme hydrolysed kappa-casein preferentially when incubated with artificial casein micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号