共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation of surface epitopes in Pseudomonas aeruginosa outer membrane porin protein OprF 总被引:1,自引:0,他引:1
Nancy L. Martin Eileen G. Rawling Rebecca S.Y. Wong Mae Rosok Robert E.W. Hancock 《FEMS microbiology letters》1993,113(3):261-266
Abstract The outer membrane proteins of several prominent bacterial pathogens demonstrate substantial variation in their surface antigenic epitopes. To determine if this was also true for Pseudomonas aeruginosa outer membraine protein OprF, gene sequencing of a serotype 5 isolate was performed to permit comparison with the published serotype 12 oprF gene sequence. Only 16 nucleotide substitutions in the 1053 nucleotide coding region were observed; none of these changed the amino acid sequence. A panel of 10 monoclonal antibodies (mAbs) reacted with each of 46 P. aeruginosa strains representing all 17 serotype strains, 12 clinical isolates, 15 environmental isolates and 2 laboratory isolates. Between two and eight of these mAbs also reacted with proteins from representatives of the rRNA homology group I of the Pseudomonadaceae . Nine of the ten mAbs recognized surface antigenic epitopes as determined by indirect immunofluorescence techniques and their ability to opsonize P. aeuroginosa for phagocytosis. These epitopes were partially masked by lipopolysacharide side chains as revealed using a side chain-deficient mutant. It is concluded that OprF is a highly conserved protein with several conserved surface antigenic epitopes. 相似文献
2.
Zlygostev SA Gataullin AG Kaloshin AA Mikhaĭlova NA Zverev VV 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》2006,(7):43-47
Study showed that synthesis of specific IgG occurs in rabbits immunized with recombinant outer membrane protein F (OprF) of Pseudomonas aeruginosa and that these antibodies inhibit grow of P. aeruginosa in vitro. In vivo studies on mice showed that rabbit hyperimmune sera and recombinant OprF are both able to protect animals from intraperitoneal challenge with P. aeruginosa. 相似文献
3.
Analysis of the Pseudomonas aeruginosa major outer membrane protein OprF by use of truncated OprF derivatives and monoclonal antibodies.
下载免费PDF全文

R L Finnen N L Martin R J Siehnel W A Woodruff M Rosok R E Hancock 《Journal of bacteriology》1992,174(15):4977-4985
TnphoA mutagenesis of the cloned oprF gene was utilized to generate 16 classes of fusions encoding differing lengths of the amino terminus of OprF fused to either alkaline phosphatase or to peptide tags of 1 to 20 amino acids, depending on the orientation and reading frame into which TnphoA was inserted. Representatives of each of the 16 classes were sequenced to determine the precise fusion joint. Four of these 16 representatives which produced in-frame fusions to alkaline phosphatase and another 8 with fusion joints in the amino-terminal half of OprF failed to react with a panel of 10 specific monoclonal antibodies. In contrast, OprF derivatives with predicted fusion joints at amino acids 180, 204, 289, and 299 reacted with one to five of the monoclonal antibodies. Four other immunoreactive OprF derivatives were created by subcloning and encoded amino acids 1 to 187, 188 to 326, 1 to 273 and 1 to 170 plus 301 to 326. On the basis of reactivity with the TnphoA-truncated derivatives and subclones of oprF, the epitopes for all 10 monoclonal antibodies were localized, in part, to specific regions of OprF. Nine of the 10 monoclonal antibodies, 8 of which recognize surface-exposed epitopes, mapped within the carboxy-terminal region of OprF that is homologous to the Escherichia coli outer membrane protein OmpA. Thus, we concluded that parts of the carboxy terminus of OprF are exposed on the external face of the outer membrane. In addition, a clone containing only the first two cysteine residues of OprF demonstrated reactivity with monoclonal antibodies MA4-4 and MA7-8 that was destroyed by 2-mercaptoethanol treatment, as was reactivity with intact OprF. Thus, we conclude that this first pair of cysteines at residues 176 and 185 of mature OprF form a disulfide bond. 相似文献
4.
Insertion mutagenesis and membrane topology model of the Pseudomonas aeruginosa outer membrane protein OprM
下载免费PDF全文

Pseudomonas aeruginosa OprM is a protein involved in multiple-antibiotic resistance as the outer membrane component for the MexA-MexB-OprM efflux system. Planar lipid bilayer experiments showed that OprM had channel-forming activity with an average single-channel conductance of only about 80 pS in 1 M KCl. The gene encoding OprM was subjected to insertion mutagenesis by cloning of a foreign epitope from the circumsporozoite form of the malarial parasite Plasmodium falciparum into 11 sites. In Escherichia coli, 8 of the 11 insertion mutant genes expressed proteins at levels comparable to those obtained with the wild-type gene and the inserted malarial epitopes were surface accessible as assessed by indirect immunofluorescence. When moved to a P. aeruginosa OprM-deficient strain, seven of the insertion mutant genes expressed proteins at variable levels comparable to that of wild-type OprM and three of these reconstituted MIC profiles resembling those of the wild-type protein, while the other mutant forms showed variable MIC results. Utilizing the data from these experiments, in conjunction with multiple sequence alignments and structure predictions, an OprM topology model with 16 beta strands was proposed. 相似文献
5.
Secondary structure of the outer membrane proteins OmpA of Escherichia coli and OprF of Pseudomonas aeruginosa. 总被引:1,自引:0,他引:1
下载免费PDF全文

When purified without the use of ionic detergents, both OmpA and OprF proteins contained nearly 20% alpha-helical structures, which disappeared completely upon the addition of sodium dodecyl sulfate. This result suggests that the proteins fold in a similar manner, with an N-terminal, membrane-spanning beta-barrel domain and a C-terminal, globular, periplasmic domain. 相似文献
6.
The amino terminus of Pseudomonas aeruginosa outer membrane protein OprF forms channels in lipid bilayer membranes: correlation with a three-dimensional model
下载免费PDF全文

Pseudomonas aeruginosa OprF forms 0.36-nS channels and, rarely, 2- to 5-nS channels in lipid bilayer membranes. We show that a protein comprising only the N-terminal 162-amino-acid domain of OprF formed the smaller, but not the larger, channels in lipid bilayers. Circular dichroism spectroscopy indicated that this protein folds into a beta-sheet-rich structure, and three-dimensional comparative modeling revealed that it shares significant structural similarity with the amino terminus of the orthologous protein Escherichia coli OmpA, which has been shown to form a beta-barrel. OprF and OmpA share only 15% identity in this domain, yet these results support the utility of modeling such widely divergent beta-barrel domains in three dimensions in order to reveal similarities not readily apparent through primary sequence comparisons. The model is used to further hypothesize why porin activity differs for the N-terminal domains of OprF and OmpA. 相似文献
7.
Biswas S Mohammad MM Movileanu L van den Berg B 《Structure (London, England : 1993)》2008,16(7):1027-1035
In Gram-negative bacteria that do not have porins, most water-soluble and small molecules are taken up by substrate-specific channels belonging to the OprD family. We report here the X-ray crystal structure of OpdK, an OprD family member implicated in the uptake of vanillate and related small aromatic acids. The OpdK structure reveals a monomeric, 18-stranded beta barrel with a kidney-shaped central pore. The OpdK pore constriction is relatively wide for a substrate-specific channel (approximately 8 A diameter), and it is lined by a positively charged patch of arginine residues on one side and an electronegative pocket on the opposite side-features likely to be important for substrate selection. Single-channel electrical recordings of OpdK show binding of vanillate to the channel, and they suggest that OpdK forms labile trimers in the outer membrane. Comparison of the OpdK structure with that of Pseudomonas aeruginosa OprD provides the first qualitative insights into the different substrate specificities of these closely related channels. 相似文献
8.
Membrane topology of the outer membrane protein OprH from Pseudomonas aeruginosa: PCR-mediated site-directed insertion and deletion mutagenesis. 总被引:1,自引:0,他引:1
下载免费PDF全文

The 21-kDa outer membrane protein OprH from Pseudomonas aeruginosa is overexpressed under Mg2+ starvation conditions and when overproduced causes resistance to polymyxin B, gentamicin, and EDTA. By circular dichroism analysis, OprH revealed a calculated beta-sheet structure content of 47.3%. PCR-based site-directed deletion and epitope insertion mutagenesis was used to test a topological model of OprH as an eight-stranded beta-barrel. Three permissive and seven nonpermissive malarial epitope insertion mutants and four permissive and four nonpermissive deletion mutants confirmed the general accuracy of this model. Thus, OprH is the smallest outer membrane protein to date to be confirmed as a beta-stranded protein. 相似文献
9.
Pseudomonas aeruginosa outer membrane protein F produced inEscherichia coli retains vaccine efficacy
Janice M. Matthews-Greer Dawn E. Robertson Linda B. Gilleland Dr. Harry E. Gilleland Jr. 《Current microbiology》1990,20(3):171-175
Pseudomonas aeruginosa outer membrane protein F was purified by extraction from polyacrylamide gels of cell envelope proteins of anEscherichia coli strain expressing the cloned gene for protein F. Antisera directed against protein F purified fromP. aeruginosa PAO1 reacted with thisE. coli strain by immunofluorescence assay and immunoblotting, whereas these antisera were nonreactive withE. coli strains lacking thePseudomonas protein F gene. The protein F purified from thisE. coli strain was used to immunize mice by intramuscular injection of 10 µg of protein F preparation on days 1 and 14, followed by burn and challenge of the mice on day 28. As compared with control mice immunized withE. coli K-12 lipopolysaccharide, immunization with theE. coli-derived protein F afforded significant protection against subsequent challenge with heterologous Fisher-Devlin immunotype 5 and 6 strains ofP. aeruginosa. Antisera from mice immunized with theE. coli-derived protein F reacted at bands corresponding to protein F and 2-mercaptoethanol-modified protein F upon immunoblotting against cell envelope proteins of the PAO1, immunotype 5, and immunotype 6 strains ofP. aeruginosa and theE. coli strain containing the cloned F gene, but failed to react at these sites in anE. coli strain lacking the F gene. These data demonstrate thatP. aeruginosa protein F produced inE. coli through genetic engineering techniques retains its vaccine efficacy in the complete absence of anyP. aeruginosa lipopolysaccharide. 相似文献
10.
Ireneusz Ceremuga Ewa Seweryn Iwona Bednarz-Misa Jadwiga Pietkiewicz Katarzyna Jermakow Teresa Banaś Andrzej Gamian 《Folia microbiologica》2014,59(5):391-397
Pseudomonas aeruginosa is one of the pathogenic bacteria which utilize binding of the host plasminogen (Plg) to promote their invasion throughout the host tissues. In the present study, we confirmed that P. aeruginosa exhibits binding affinity for human plasminogen. Furthermore, we showed that the protein detected on the cell wall of P. aeruginosa and binding human plasminogen is an enolase-like protein. The hypothesis that alpha-enolase, a cytoplasmatic glycolytic enzyme, resides also on the cell surface of the bacterium was supported by electron microscopy analysis. The plasminogen-binding activity of bacterial cell wall outer membrane enolase-like protein was examined by immunoblotting assay. 相似文献
11.
Pseudomonas aeruginosa outer membrane: peptidoglycan-associated proteins. 总被引:7,自引:10,他引:7
下载免费PDF全文

The Pseudomonas aeruginosa outer membrane was isolated with attached peptidoglycan and fractionated with Triton X-100, ethylenediaminetetraacetate, and lysozyme. The data suggest that major outer membrane proteins F, H2, and I are noncovalently associated with the peptidoglycan. 相似文献
12.
13.
The protein F-deficient cells of Pseudomonas aeruginosa were previously found to be more susceptible to osmotic shock than the sufficient cells (Gotoh et al., J. Bacteriol., in press). The protein F-deficient cells were observed by the thin-section method of electron microscopy to determine the effects of osmotic shock. The osmotic shock induced breakage of the protein F-deficient outer membrane, while it had no effect on the protein F-sufficient outer membrane. These results suggested that the cells lost their viability by the osmotic shock caused by fragility of the outer membrane. 相似文献
14.
15.
Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. 总被引:29,自引:9,他引:29
A mutant of Pseudomonas aeruginosa severely deficient in outer membrane protein F levels was isolated by screening heavily mutagenized strains for membrane protein alterations on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. To provide a basis for phenotypic comparison, three independent spontaneous revertants with normal protein F levels were isolated. Neither the protein F-deficient mutant nor its revertants had gross surface alterations as judged by their sensitivities to 31 phages with diverse receptors and their low degrees of leakage of periplasmic beta-lactamase into the supernatant. Outer membrane permeability was measured in whole cells by examining the rates of hydrolysis of a chromogenic beta-lactam, nitrocefin, by periplasmic RP1-encoded beta-lactamase. It was found that the outer membrane permeabilities of wild-type and protein F revertant strains were similar, but low when compared with those of Escherichia coli and an antibiotic-supersusceptible mutant Z61 of P. aeruginosa. The loss of protein F caused a further significant decrease in outer membrane permeability. The results suggest that protein F is a pore-forming protein in vivo and that only a small proportion, as few as 1 in 400, of the protein F molecules form active functional channels in vivo. 相似文献
16.
Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability.
下载免费PDF全文

Earlier studies that used model membrane reconstitution methods have come to different conclusions regarding the exclusion limit of the outer membrane of Pseudomonas aeruginosa and whether OprF is the major channel-forming protein in the outer membrane. In this study, a 6.2-kbp SalI fragment, encoding only two cytoplasmic enzymes, alpha-galactosidase and sucrose hydrolase, and the inner membrane raffinose permease, was cloned behind the m-toluate-inducible tol promoter of vector pNM185 to create plasmid pFB71. P. aeruginosa strains harboring pFB71, when grown with inducer, produced both enzymes encoded by the insert and had acquired the ability to grow on the disaccharide melibiose and the trisaccharide raffinose. The rate of growth was dependent on the concentration and size of the saccharide and was decreased three- to fivefold by the absence of OprF, as examined by measuring the growth on melibiose and raffinose of an isogenic OprF-deficient omega insertion derivative, H636(pFB71). At high concentrations, di-, tri-, and tetrasaccharides could pass across the outer membrane to plasmolyze P. aeruginosa, as measured by light scattering and confirmed by electron microscopy. The initial rate kinetics of light-scattering changes were dependent on the size of the saccharide being used. Furthermore, the rates of change in light scattering due to raffinose and stachyose uptake across the outer membrane for strain H636 were fivefold or more lower than for its OprF-sufficient parent H103. These data are consistent with model membrane studies showing that OprF is the most predominant porin for compounds larger than disaccharides in P. aeruginosa and suggest that the exclusion limit for this porin and the outer membrane is greater than the size of a tetrasaccharide. In addition, these data confirmed the existence of other porins with a predominant function in monosaccharide uptake and a more minor function in the uptake of larger saccharides. 相似文献
17.
Nestorovich EM Sugawara E Nikaido H Bezrukov SM 《The Journal of biological chemistry》2006,281(24):16230-16237
Using ion channel reconstitution in planar lipid bilayers, we examined the channel-forming activity of subfractions of Pseudomonas aeruginosa OprF, which was shown to exist in two different conformations: a minority single domain conformer and a majority two-domain conformer (Sugawara, E., Nestorovich, E. M., Bezrukov, S. M., and Nikaido, H. (2006) J. Biol. Chem. 281, 16220-16229). With the fraction depleted for the single domain conformer, we were unable to detect formation of any channels with well defined conductance levels. With the unfractionated OprF, we saw only rare channel formation. However, with the single domain-enriched fraction of OprF, we observed regular insertion of channels with highly reproducible conductances. Single OprF channels demonstrate rich kinetic behavior exhibiting spontaneous transitions between several subconformations that differ in ionic conductance and radius measured in polymer exclusion experiments. Although we showed that the effective radius of the most conductive conformation exceeds that of the general outer membrane porin of Escherichia coli, OmpF, we also found that a single OprF channel mainly exists in weakly conductive subconformations and switches to the fully open state for a short time only. Therefore, the low permeability of OprF reported earlier may be due to two factors: mainly to the paucity of the single domain conformer in the OprF population and secondly to the predominance of weakly conductive subconformations within the single domain conformer. 相似文献
18.
Expression in Escherichia coli and function of Pseudomonas aeruginosa outer membrane porin protein F 总被引:16,自引:13,他引:16
下载免费PDF全文

W A Woodruff T R Parr R E Hancock L F Hanne T I Nicas B H Iglewski 《Journal of bacteriology》1986,167(2):473-479
The gene encoding porin protein F of Pseudomonas aeruginosa was cloned onto a cosmid vector into Escherichia coli. Protein F was expressed as the predominant outer membrane protein in a porin-deficient E. coli background and was clearly visible on one-dimensional sodium dodecyl sulfate-polyacrylamide gels in a porin-sufficient background. The identity of the protein F from the E. coli clone and native P. aeruginosa protein F was demonstrated by their identical mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoretograms, 2-mercaptoethanol modifiabilities, and reactivities with monoclonal antibodies specific of two separate epitopes of protein F. In the course of gene subcloning, a 2-kilobase DNA fragment was isolated, with an apparent truncation of the part of the gene encoding the carboxy terminus of protein F. This subclone produced a 24,000-molecular-weight, outer membrane-associated, truncated protein F derivative which was not 2-mercaptoethanol modifiable and which reacted with only one of the two classes of protein F-specific monoclonal antibodies. The 2-kilobase fragment was used in Southern blot hybridizations to construct a restriction map of the cloned and subcloned fragments and to demonstrate with restriction digests of whole P. aeruginosa DNA that only one copy of the protein F gene was present in the P. aeruginosa chromosome. The protein F produced by the original cosmid clone in a porin-deficient E. coli background was purified. To demonstrate retention of porin function after cloning, the protein F from the E. coli clone was incorporated into black lipid bilayer membranes. Two major classes of channels were revealed. The predominant class of channels had an average conductance of 0.36 nS in 1 M KCl, whereas larger channels (4 to 7 nS) were seen at a lower frequency. Similar channel sizes were observed for porin protein F purified by the same method from P. aeruginosa outer membranes. 相似文献
19.
Sugawara E Nestorovich EM Bezrukov SM Nikaido H 《The Journal of biological chemistry》2006,281(24):16220-16229
The major nonspecific porin of Pseudomonas aeruginosa, OprF, produces a large channel yet allows only a slow diffusion of various solutes. Here we provide an explanation of this apparent paradox. We first show, by introduction of tobacco etch virus protease cleavage site in the middle of OprF protein, that most of OprF population folds as a two-domain protein with an N-terminal beta-barrel domain and a C-terminal periplasmic domain rich in alpha-helices. However, sedimentation of unilamellar proteoliposomes through an iso-osmotic gradient showed that only about 5% of the OprF population produced open channels. Gel filtration showed that the open channel conformers tended to occur in oligomeric associations. Because the open channel conformer is likely to fold as a single domain protein with a large beta-barrel, we reasoned that residues near the C terminus may be exposed on cell surface in this conformer. Introduction of a cysteine residue at position 312 produced a functional mutant protein. By using bulky biotinylation reagents on intact cells, we showed that this cysteine residue was not exposed on cell surface in most of the OprF population. However, the minority OprF population that was biotinylated in such experiments was enriched for the conformer with pore-forming activity and had a 10-fold higher pore-forming specific activity than the bulk OprF population. Finally trypsin treatment, which preferentially cleaves the C-terminal domain of the two-domain conformer, did not affect the pore-forming activity of OprF nor did it digest the minority conformer whose residue 312 is exposed on cell surface. 相似文献
20.
Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. 总被引:11,自引:5,他引:11
下载免费PDF全文

To investigate the functional role of protein F of the outer membrane of Pseudomonas aeruginosa, we isolated mutants devoid of protein F, and the defective gene was transferred to a wild-type strain by plasmid FP5-mediated conjugation. Chemical analyses of the protein F-deficient outer membrane revealed that the amount of outer membrane protein was reduced to 72 to 74% of that of the protein F-sufficient strain and that lipopolysaccharides and phospholipids increased to 117 to 123% and 135 to 136%, respectively. The mutants and the transconjugant showed the following characteristics: (i) growth rates of protein F-deficient strains in low-osmolarity medium (e.g., L broth containing 0.1% NaCl) were less than 1/10 the rate of the protein F-sufficient strain; (ii) protein F-deficient cells were rounded, and the outer membrane formed large protruded blebs; and (iii) the outer membrane became physically fragile, since a significant amount of periplasmic proteins leaked out and the cells became highly sensitive to osmotic shock. The results suggested that protein F plays an important role in morphogenesis and in maintaining the integrity of the outer membrane. Determination of the diffusion rates of saccharides and beta-lactam antibiotics showed that the protein F-deficient outer membrane had no detectable transport defect compared with the protein F-sufficient outer membrane. The MICs of antibiotics for the protein F-deficient strains were nearly identical to those for the protein F-sufficient strain. 相似文献