首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Phosphorus is an essential nutrient, but how phosphates cross the mycobacterial cell wall is unknown. Phosphatase activity in whole cells of Mycobacterium smegmatis was significantly lower than that in lysed cells, indicating that access to the substrate was restricted. The loss of the outer membrane (OM) porin MspA also reduced the phosphatase activity in whole cells compared to that in lysed cells. A similar result was obtained for M. smegmatis that overexpressed endogenous alkaline phosphatase, indicating that PhoA is not a surface protein, contrary to a previous report. The uptake of phosphate by a mutant lacking the porins MspA and MspC was twofold lower than that by wild-type M. smegmatis. Strikingly, the loss of these porins resulted in a severe growth defect of M. smegmatis on low-phosphate plates. We concluded that the OM of M. smegmatis represents a permeability barrier for phosphates and that Msp porins are the only OM channels for the diffusion of phosphate in M. smegmatis. However, phosphate diffusion through Msp pores is rather inefficient as shown by the 10-fold lower permeability of M. smegmatis for phosphate compared to that for glucose. This is likely due to the negative charges in the constriction zone of Msp porins. The phosphatase activity in whole cells of Mycobacterium bovis BCG was significantly less than that in lysed cells, indicating a similar uptake pathway for phosphates in slow-growing mycobacteria. However, porins that could mediate the diffusion of phosphates across the OM of M. bovis BCG and Mycobacterium tuberculosis are unknown.  相似文献   

3.
Aggregates of the "major" outer membrane proteins, "porins," of Salmonella typhimurium form diffusion channels in reconstituted vesicle membranes. The aggregate consists of three species of porins with apparent molecular weights of 34,000, 35,000, and 36,000 when active aggregates are subjected to sodium dodecyl sulfate-acrylamide gel electrophoresis after heating in the presence of sodium dodecyl sulfate (Nakae, J. Biol. Chem. 251:2176-2178, 1976). Single species of porins were isolated by solubilization of membranes and subsequent gel filtration in the presence of sodium dodecyl sulfate from the mutant strains of Salmonella typhimurium that produced only single species of porin. The single species of porins of either 34,000, 35,000, or 36,000 daltons formed diffusion channels when assayed for sucrose permeability in the vesicle membranes reconstituted from porins, phospholipids, and lipopolysaccharides. The exclusion limits of the pores made of single species of porins were not distinguishable from each other and from the exclusion limits of the pores made of the porin aggregates from the wild-type strain, when the permeability of vesicle membranes to radioactive di-, tri-, and tetrasaccharides and to various sizes of radioactive polyethylene glycol was determined. Porin-deficient mutants produced residual amounts of porin amounting to 1 to 5% that produced by the parent strain. This residual porin made diffusion channels when the isolated porins were incorporated into the vesicle membrane and assayed for permeability of saccharides.  相似文献   

4.
Abstract Bacteriocin susceptibilities indicate that during cloacin DF13 uptake the F porin of Enterobacter cloacae plays a similar role to that reported for the OmpF porin of Escherichia coli during colicin A entry. The translocatory activities of these two porins during the bacteriocin uptake can be substituted by the porins D and OmpC, respectively, under conditions not requiring the receptor binding step. Using anti-peptide antibodies, a peptide located in the internal loop L3 of the Escherichia coli OmpF porin was identified in the D and F porins of Enterobacter cloacae. The results demonstrated the existence of a close relationship between porins in terms of both antigenic determinants and bacteriocin susceptibilities.  相似文献   

5.
Nutrients usually cross the outer membrane of Escherichia coli by diffusion through water-filled channels surrounded by a specific class of protein, porins. In this study, the rates of diffusion of hydrophilic nonelectrolytes, mostly sugars and sugar alcohols, through the porin channels were determined in two systems, (a) vesicles reconstituted from phospholipids and purified porin and (b) intact cells of mutant strains that produce many fewer porin molecules than wild-type strains. The diffusion rates were strongly affected by the size of the solute, even when the size was well within the "exclusion limit" of the channel. In both systems, hexoses and hexose disaccharides diffused through the channel at rates 50-80% and 2-4%, respectively, of that of a pentose, arabinose. Application of the Renkin equation to these data led to the estimate that the pore radius is approximately 0.6 nm, if the pore is assumed to be a hollow cylinder. The results of the study also show that the permeability of the outer membrane of the wild-type E. coli cell to glucose and lactose can be explained by the presence of porin channels, that a significant fraction of these channels must be functional or "open" under our conditions of growth, and that even 10(5) channels per cell could become limiting when E. coli tries to grow at a maximal rate on low concentrations of slowly penetrating solutes, such as disaccharides.  相似文献   

6.
In Enterobacter aerogenes, multidrug resistance involves a decrease in outer membrane permeability associated with changes in an as yet uncharacterized porin. We purified the major porin from the wild-type strain and a resistant strain. We characterized this porin, which was found to be an OmpC/OmpF-like protein and analysed its pore-forming properties in lipid bilayers. The porin from the resistant strain was compared with the wild-type protein and we observed (i) that its single-channel conductance was 70% lower than that of the wild type; (ii) that it was three times more selective for cations; (iii) a lack of voltage sensitivity. These results indicate that the clinical strain is able to synthesize a modified porin that decreases the permeability of the outer membrane. Mass spectrometry experiments identified a G to D mutation in the putative loop 3 of the porin. Given the known importance of this loop in determining the pore properties of porins, we suggest that this mutation is responsible for the novel resistance mechanism developed by this clinical strain, with changes in porin channel function acting as a new bacterial strategy for controlling beta-lactam diffusion via porins.  相似文献   

7.
Proteus mirabilis isolates commonly have decreased susceptibility to imipenem. Previously, we found P. mirabilis hfq mutant was more resistant to imipenem and an outer membrane protein (OMP) could be involved. Therefore, we investigated the role of this OMP in carbapenem susceptibility. By SDS-PAGE we found this OMP (named ImpR) was increased in hfq mutant and LC-MS/MS revealed it to be the homologue of Salmonella YbfM, which is a porin for chitobiose and subject to MicM (a small RNA) regulation. We demonstrated that ImpR overexpression resulted in increased carbapenem MICs in the laboratory strain and clinical isolates. Chitobiose induced expression of chb (a chitobiose utilization operon). Real-time RT-PCR and SDS-PAGE were performed to elucidate the relationship of hfq, impR, chb and MicM in P. mirabilis. We found MicM RNA was decreased in hfq mutant and chbBC-intergenic region (chbBC-IGR) overexpression strain (chbIGRov), while impR mRNA was increased in hfq mutant, micM mutant and chbIGRov strain. In addition, mutation of hfq or micM and overexpression of chbBC-IGR increased ImpR protein level. Accordingly, chitobiose made wild-type have higher levels of ImpR protein and are more resistant to carbapenems. Hfq- and MicM-complemented strains restored wild-type MICs. Mutation of both impR and hfq eliminated the increase in carbapenem MICs observed in hfq mutant and ImpR-complementation of hfq/impR double mutant resulted in MICs as hfq mutant, indicating that the ImpR-dependent decreased carbapenem susceptibility of hfq mutant. These indicate MicM was antisense to impR mRNA and was negatively-regulated by chbBC-IGR. Together, overexpression of ImpR contributed to the decreased carbapenem susceptibility in P. mirabilis.  相似文献   

8.
When grown at acidic pH, Escherichia coli cells secrete cadaverine, a polyamine known to inhibit porin-mediated outer membrane permeability. In order to understand the physiological significance of cadaverine excretion and the inhibition of porins, we isolated an OmpC mutant that showed resistance to spermine during growth and polyamine-resistant porin-mediated fluxes. Here, we show that the addition of exogenous cadaverine allows wild-type cells to survive a 30-min exposure to pH 3.6 better than cells expressing the cadaverine-insensitive OmpC porin. Competition experiments between strains expressing either wild-type or mutant OmpC showed that the lack of sensitivity of the porin to cadaverine confers a survival disadvantage to the mutant cells at reduced pH. On the basis of these results, we propose that the inhibition of porins by excreted cadaverine represents a novel mechanism that provides bacterial cells with the ability to survive acid stress.  相似文献   

9.
MspA is an extremely stable, oligomeric porin from Mycobacterium smegmatis that forms water-filled channels in vitro. Immunogold electron microscopy and an enzyme-linked immunosorbent assay demonstrated that MspA is localized in the cell wall. An mspA deletion mutant did not synthesize detectable amounts of mspA mRNA, as revealed by amplification using mspA-specific primers and reverse-transcribed RNA. Detergent extracts of the DeltamspA mutant exhibited a significantly lower porin activity in lipid bilayer experiments and contained about fourfold less porin than extracts of wild-type M. smegmatis. The chromosome of M. smegmatis encodes three proteins very similar to MspA. Sequence analysis of the purified porin revealed that mspB or mspC or both genes are expressed in the DeltamspA mutant. The properties of this porin, such as single channel conductance, extreme stability against denaturation, molecular mass and composition of 20 kDa subunits, are identical to those of MspA. Deletion of mspA reduced the cell wall permeability towards cephaloridine and glucose nine- and fourfold respectively. These results show that MspA is the main general diffusion pathway for hydrophilic molecules in M. smegmatis and was only partially replaced by fewer porins in the cell wall of the DeltamspA mutant [corrected] This is the first experimental evidence that porins are the major determinants of the exceptionally low permeability of mycobacteria to hydrophilic molecules.  相似文献   

10.
Resistance to carbapenems has been documented by the production of carbapenemase or the loss of porins combined with extended-spectrum β-lactamases or AmpC β-lactamases. However, no complete comparisons have been made regarding the contributions of each resistance mechanism towards carbapenem resistance. In this study, we genetically engineered mutants of Klebsiella pneumoniae with individual and combined resistance mechanisms, and then compared each resistance mechanism in response to ertapenem, imipenem, meropenem, doripenem and other antibiotics. Among the four studied carbapenems, ertapenem was the least active against the loss of porins, cephalosporinases and carbapenemases. In addition to the production of KPC-2 or NDM-1 alone, resistance to all four carbapenems could also be conferred by the loss of two major porins, OmpK35 and OmpK36, combined with CTX-M-15 or DHA-1 with its regulator AmpR. Because the loss of OmpK35/36 alone or the loss of a single porin combined with bla CTX-M-15 or bla DHA-1-ampR expression was only sufficient for ertapenem resistance, our results suggest that carbapenems other than ertapenem should still be effective against these strains and laboratory testing for non-susceptibility to other carbapenems should improve the accurate identification of these isolates.  相似文献   

11.
Cao Z  Klebba PE 《Biochimie》2002,84(5-6):399-412
To kill Escherichia coli, toxic proteins, called colicins, pass through the permeability barrier created by the outer membrane (OM) of the bacterial cell envelope. We consider a variety of different colicins, including A, B, D, E1, E3, Ia, M and N, that penetrate through the porins OmpF, FepA, BtuB, Cir and FhuA, to subsequently interact with a few targets in the periplasm, including TolA, TolB, TolC and TonB. We review the mechanisms, demonstrated and postulated, by which such toxins enter bacterial cells, from the initial binding stage on the cell surface to the internalization reaction through the OM bilayer. Our discussions endeavor to answer two main questions: what is the origin of colicin-binding affinity and specificity, and after adsorption to OM porins, do colicin polypeptides translocate through porin channels, or enter by another, currently unknown pathway?  相似文献   

12.
Wild-type Escherichia coli K-12 produces two porins, OmpF (protein 1a) and OmpC (protein 1b). In mutants deficient in both of these "normal" porins, secondary mutants that produce a "new" porin, protein PhoE (protein E), are selected for. We determined the properties of the channels produced by each of these porins by measuring the rates of diffusion of various cephalosporins through the outer membrane in strains producing only one porin species. We found that all porin channels retarded the diffusion of more hydrophobic cephalosporins and that with monoanionic cephalosporins a 10-fold increase in the octanol-water partition coefficient of the solute produced a 5- to 6-fold decrease in the rate of penetration. Electrical charges of the solutes had different effects on different channels. Thus, with the normal porins (i.e., OmpF and OmpC proteins) additional negative charge drastically reduced the penetration rate through the channels, whereas additional positive charge significantly accelerated the penetration. In contrast, diffusion through the PhoE channel was unaffected by the presence of an additional negative charge. We hypothesize that the relative exclusion of hydrophobic and negatively charged solutes by normal porin channels is of ecological advantage to E. coli, which must exclude hydrophobic and anionic bile salts in its natural habitat. The properties of the PhoE porin are also consistent with the recent finding (M. Argast and W. Boos, J. Bacteriol. 143:142-150, 1980; J. Tommassen and B. Lugtenberg, J. Bacteriol. 143:151-157, 1980) that its biosynthesis is derepressed by phosphate starvation; the channel may thus act as an emergency pore primarily for the uptake of phosphate and phosphorylated compounds.  相似文献   

13.
The protective immunity against Salmonella typhimurium-infection in mice immunized with porins from mutant strains of S. typhimurium was studied. A high level of protection against S. typhimurium infection was achieved in mice immunized with native porins from S. typhimurium LT2 (wild-type strain) but not from S. typhimurium SH6017, SH6260, or SH5551 (mutant strains), which produce 34K, 35K, or 36K porin, respectively. Moreover, when mice were immunized with mixtures of 34K, 35K, and 36K porins (34K + 35K, 35K + 36K, 34K + 36K, or 34K + 35K + 36K porin) or LT2 porin heated at 100 C for 2 min in 2% SDS (heat-denatured LT2 porin), the degree of protective immunities in the mice was very much lower than that in the mice immunized with the native LT2 porin. However, antisera raised against these porins showed no significant differences of the antibody titer against LT2 porin or LT2 whole cells. On the other hand, mice immunized with the native LT2 porin--but not 34K, 35K, 36K, 34K + 35K + 36K, and the heat-denatured LT2 porins--exhibited significant levels of delayed-type hypersensitivity reaction and interleukin-2 production when they were elicited with whole cells of S. typhimurium LT2. These observations suggested that the high level of protection induced by the native LT2 porin immunization was dependent on the induction of cell-mediated immunity.  相似文献   

14.
Integral membrane proteins known as porins are the major pathway by which hydrophilic antibiotics cross the outer membrane of Gram-negative bacteria. Single point mutations in porins can decrease the permeability of an antibiotic, either by reduction of channel size or modification of electrostatics in the channel, and thereby confer clinical resistance. Here, we investigate four mutant OmpC proteins from four different clinical isolates of Escherichia coli obtained sequentially from a single patient during a course of antimicrobial chemotherapy. OmpC porin from the first isolate (OmpC20) undergoes three consecutive and additive substitutions giving rise to OmpC26, OmpC28, and finally OmpC33. The permeability of two zwitterionic carbapenems, imipenem and meropenem, measured using liposome permeation assays and single channel electrophysiology differs significantly between OmpC20 and OmpC33. Molecular dynamic simulations show that the antibiotics must pass through the constriction zone of porins with a specific orientation, where the antibiotic dipole is aligned along the electric field inside the porin. We identify that changes in the vector of the electric field in the mutated porin, OmpC33, create an additional barrier by “trapping” the antibiotic in an unfavorable orientation in the constriction zone that suffers steric hindrance for the reorientation needed for its onward translocation. Identification and understanding the underlying molecular details of such a barrier to translocation will aid in the design of new antibiotics with improved permeation properties in Gram-negative bacteria.  相似文献   

15.
Many bacteria rely on siderophores to extract iron from the environment. However, acquisition of iron-loaded siderophores is dependent on high-affinity uptake systems that are not produced under high-iron conditions. The fact that bacteria are able to maintain iron homeostasis in the absence of siderophores indicates that alternative iron acquisition systems exist. It has been speculated that such low-affinity uptake of iron in Gram-negative bacteria includes diffusion of iron ions or chelates across the outer membrane through porins. The outer membrane of the saprophytic Mycobacterium smegmatis contains the Msp family of porins, which enable the diffusion of small and hydrophilic solutes, such as monosaccharides, amino acids, and phosphate. However, it is unknown how cations cross the outer membrane of mycobacteria. Here, we show that the Msp porins of M. smegmatis are involved in the acquisition of soluble iron under high-iron conditions. Uptake of ferric ions by a triple porin mutant was reduced compared to wild-type (wt) M. smegmatis. An intracellular iron reporter indicated that derepression of iron-responsive genes occurs at higher iron concentrations in the porin mutant. This was consistent with the finding that the porin mutant produced more siderophores under low-iron conditions than wt M. smegmatis. In contrast, uptake of the exochelin MS, the main siderophore of M. smegmatis, was not affected by the lack of porins, indicating that a specific outer membrane siderophore receptor exists. These results provide, to our knowledge, the first experimental evidence that general porins are indeed the outer membrane conduit of low-affinity iron acquisition systems in bacteria.  相似文献   

16.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

17.
Abstract The protein-D2 porin of Pseudomonas aeruginosa is lacking in carbapenem or fluoroquinolone-resistant strains and hence was thought to facilitate the diffusion of these antibiotics. We examined the effect of several antibiotics on the single channel conductivity of protein-D2 in planar lipid bilayers and found that fluoroquinolones and carbapenems at concentrations of around 1 mM caused closure of the protein-D2 channel. Tetracycline, ampicillin, piperacillin, and latamoxef did not exert any detectable effect on the protein-D2 channel activity.  相似文献   

18.
Mycobacteria are among the microorganisms least susceptible to biocides but cause devastating diseases, such as tuberculosis, and increasingly opportunistic infections. The exceptional resistance of mycobacteria to toxic solutes is due to an unusual outer membrane, which acts as an efficient permeability barrier, in synergy with other resistance mechanisms. Porins are channel-forming proteins in the outer membrane of mycobacteria. In this study we used the alamarBlue assay to show that the deletion of Msp porins in isogenic mutants increased the resistance of Mycobacterium smegmatis to isothiazolinones (methylchloroisothiazolinone [MCI]/methylisothiazolinone [MI] and octylisothiazolinone [2-n-octyl-4-isothiazolin-3-one; OIT]), formaldehyde-releasing biocides {hexahydrotriazine [1,3,5-tris (2-hydroxyethyl)-hexahydrotriazine; HHT] and methylenbisoxazolidine [N,N'-methylene-bis-5-(methyloxazolidine); MBO]}, and the lipophilic biocides polyhexamethylene biguanide and octenidine dihydrochloride 2- to 16-fold. Furthermore, the susceptibility of the porin triple mutant against a complex disinfectant was decreased 8-fold compared to wild-type (wt) M. smegmatis. Efficacy testing in the quantitative suspension test EN 14348 revealed 100-fold improved survival of the porin mutant in the presence of this biocide. These findings underline the importance of porins for the susceptibility of M. smegmatis to biocides.  相似文献   

19.
Outer membrane permeability of Escherichia coli O157:H7 was determined by an in vivo kinetic model with the periplasmic enzyme alkaline phosphatase [Martinez et al. (1996) Biochemistry 35, 1179-1186]. p-Nitrophenyl phosphate (PNPP) substrate, added to intact bacteria, must diffuse through the outer membrane to reach the enzyme. At low substrate concentration the bacterium was in the perfectly reactive state where all molecules that entered the periplasm were captured and converted to product. Transmembrane diffusion was rate limiting, and the permeability of the outer membrane was determined from kinetic properties. The O157:H7 strain grown at 30 degrees C showed one-sixth the permeability of wild-type E. coli grown at 30 degrees C. Wild-type bacteria grown at >/=37 degrees C show a physiological response with a shift in expression of outer membrane porins that lowered permeability to PNPP by approximately 70%. The O157:H7 strain did not display this temperature-sensitive shift in permeability even though a change in porin expression could be visualized by staining intensity of Omp F and Omp C on acrylamide gels. Altered behavior of the O157:H7 membrane was also indicated by a several thousand-fold lower response to transformation relative to wild-type E. coli. Matrix-assisted laser desorption ionization time of flight mass spectrometry and electrospray ionization mass spectrometry confirmed the expression of the Omp F and Omp C variants that are unique to E. coli O157:H7. This reduced outer membrane permeability can contribute to enhanced resistance of O157:H7 to antimicrobial agents.  相似文献   

20.
Yersinia pseudotuberculosis outer membrane (OM) recombinant mutant OmpF porins with deletions of the external loops L1, L6 and L8 were obtained using site-directed mutagenesis of the recombinant plasmid including ompF gene. Heterologeous expression of the mutant proteins was carried out in strain Rosetta of Escherichia coli (Novagen, USA), porins with the deletions were isolated from the inclusion bodies. Oligomers of mutant porins were obtained as result of dialysis and ion-exchange chromatography. Spatial structure of the mutant proteins was found to have special features in comparison with that of the full-structured OmpF porin on the level of both secondary and tertiary structure. As shown using bilayer lipid membrane (BLM) technique the absence of the loops L1, L6 and L8 didn’t affect the conductivity level of Y. pseudotuberculosis porin channel. The absence of the loops mentioned above has a significant influence on the antigenic structure of the mutant porins as demonstrated using immunoblotting technique and ELISA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号