首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double-strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. We have therefore compared the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with 137Cs gamma rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy is similar for both cell lines with 50% of the rejoining completed in about 12 min. Approximately 83 and 87% of the DSB are rejoined in the TN-368 and V79 cells, respectively, by 1 h postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 h postirradiation, whereas approximately 92% of the DSB are rejoined in the V79 cells by 2 h postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for both cell lines, but this relationship is not as pronounced for the TN-368 cells. In general, these findings do not support the hypothesis that unrejoined DNA DSB represent the critical molecular lesion responsible for cell death.  相似文献   

2.
NBS1-deficient cells exhibit pronounced radiosensitivity and defects in chromosome integrity after ionizing radiation (IR) exposure, yet show only a minor defect in DNA double-strand break (DSB) rejoining, leaving an as yet unresolved enigma as to the nature of the radiosensitivity of these cells. To further investigate the relationship between radiosensitivity, DSB repair, and chromosome stability, we have compared cytological and molecular assays of DSB misrejoining and repair in NBS1-defective, wild type, and NBS1-complemented cells after IR damage. Our findings suggest a subtle defect in overall DSB rejoining in NBS1-defective cells and uniquely also reveal reduced ability of NBS1-defective cells to rejoin correct ends of DSBs. In agreement with published results, one of two different NBS1-defective cell lines showed a slight defect in overall rejoining of DSBs compared to its complemented counterpart, whereas another NBS line did not show any difference from wild type cells. Significant defects in the correct rejoining of DSBs compared to their respective controls were observed for both NBS1-defective lines. The defect in DSB rejoining and the increased misrejoining detected at the molecular level were also reflected in higher levels of fragments and translocations, respectively, at the chromosomal level. This work provides both molecular and cytological evidence that NBS1-deficient cells have defects in DSB processing and reveals that these molecular events can be manifest cytologically.  相似文献   

3.
Gradzka I  Iwaneńko T 《DNA Repair》2005,4(10):1129-1139
A PFGE method was adapted to measure DNA double-strand breaks (DSBs) in mammalian cells after low (0-25 Gy) doses of ionising radiation. Instead of radionuclide incorporation, DNA staining in the gel by SYBR-Gold was used, which lowered the background of DNA damage and could be applied to non-cycling cells. DSB level was defined as a product of a fraction of DNA released to the gel (FR) and a number of DNA fragments in the gel (DNA(fragm)) and expressed as a percentage above control value. The slope of the dose-response curve was two-fold higher compared to that with FR alone as DSB level indicator (31.4 versus 15.6% per Gy). Two alternative ways were proposed to determine the total amount of DNA, used for FR calculation: measurement of DNA content in a plug not subjected to electrophoresis, with the use of Pico-Green, or estimation of DNA released to the gel from a plug irradiated with 600 Gy of gamma-rays. The limit of DSB detection was 0.25 Gy for human G1-lymphocytes and 0.5-1 Gy for asynchronous cultures of human glioma M059 K and J or mouse lymphoma L5178Y-R and -S cells. Specificity of our PFGE assay to DSB was confirmed by the fact that no damage was detected after treatment of the cells with H(2)O(2), an inducer of single-strand DNA breaks (SSBs). On the contrary, the H(2)O(2) inflicted damage was detected by neutral comet assay, attaining 160% above control (equivalent to 2.5 Gy of X-radiation). DSB rejoining, measured in cells after X-irradiation with a dose of 10 Gy, generally proceeded faster than that measured previously after higher (30-50 Gy) doses of ionising radiation. Clearly seen were defects in DSB rejoining in radiosensitive M059 J and L5178Y-S cells compared to their radioresistant counterparts, M059 K and L5178Y-R. In some cell lines, a secondary post-irradiation increase in DSB levels was observed. The possibility is considered that these additional DSBs may accumulate during processing of non-DSB clustered DNA damage or/and represent early apoptotic events.  相似文献   

4.
c-Abl tyrosine kinase is activated by agents that induce double-strand DNA breaks (DSBs) and interacts with key components of the DNA damage response and of the DSB repair machinery. However, the functional significance of c-Abl in these processes, remained unclear. In this study, we demonstrate, using comet assay and pulsed-field gel electrophoresis, that c-Abl inhibited the repair of DSBs induced by ionizing radiation, particularly during the second and slow phase of DSB repair. Pharmacological inhibition of c-Abl and c-Abl depletion by siRNA-mediated knockdown resulted in higher DSB rejoining. c-Abl null MEFs exhibited higher DSB rejoining compared with cells reconstituted for c-Abl expression. Abrogation of c-Abl kinase activation resulted in higher H2AX phosphorylation levels and higher numbers of post-irradiation γH2AX foci, consistent with a role of c-Abl in DSB repair regulation. In conjunction with these findings, transient abrogation of c-Abl activity resulted in increased cellular radioresistance. Our findings suggest a novel function for c-Abl in inhibition of the slow phase of DSB repair.  相似文献   

5.
6.
DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice. Loss of NHEJ proteins also slows DSB repair allowing increased resection. However, expression of an autophosphorylation-defective DNA-PKcs mutant, which binds DSBs but precludes the completion of NHEJ, dramatically reduces DSB end resection at all DSBs. In contrast, loss of HR does not impair repair by NHEJ although CtIP-dependent end resection precludes NHEJ usage. We propose that NHEJ initially attempts to repair DSBs and, if rapid rejoining does not ensue, then resection occurs promoting repair by HR. Finally, we identify novel roles for ATM in regulating DSB end resection; an indirect role in promoting KAP-1-dependent chromatin relaxation and a direct role in phosphorylating and activating CtIP.  相似文献   

7.
The repair of radiation-induced DNA double-strand breaks (DSBs) is frequently investigated by measuring the time-dependent decrease in the fraction of fragmented DNA that is able to enter electrophoresis gels. When transformed into equivalent doses without repair, such measurements are thought to reflect the removal of DSBs, and they typically exhibit a fast initial component and a decreasing rate at longer repair intervals. This formalism, however, assumes that the spatial distribution of unrejoined breakage resembles the pattern of induction of DSBs. While the size distributions for initial fragmentation, such as that resolved by conventional pulsed-field gel electrophoresis (PFGE) (between about 10(5) and 10(7) bp), are well known to agree with the prediction of random breakage, no data are available from studies explicitly testing this relationship for residual breakage. Therefore, Chinese hamster V79 cells and MeWo (human melanoma) cells were irradiated with different doses (10-100 Gy) or were incubated for repair for up to 4 h after a single dose of 100 Gy (V79) or 90 Gy (MeWo) before being subjected to PFGE. Fragment size distributions were calculated by convolution of the PFGE profiles with an appropriately generated size calibration function. The results clearly demonstrate an over-representation of smaller fragments (below about 2-3 Mbp) compared to the prediction of randomness for residual breakage. In consequence, the time-dependent decrease of dose-equivalent values calculated from data on the fraction released may not directly reflect DSB rejoining rates. The present findings are compatible with an earlier suggestion of slow rejoining of breaks which have been induced as multiple breaks (two or more) in large chromosomal loops, thus also predicting an increase of the slowly rejoining DSB fraction with increasing dose.  相似文献   

8.
DNA end-joining is the major repair pathway for double-strand breaks (DSBs) in higher eukaryotes. To understand how DSB structure affects the end-joining process in human cells, we have examined the in vivo repair of linearized plasmids containing complementary as well as several different configurations of non-complementary DNA ends. Our results demonstrate that, while complementary and blunt termini display comparable levels of error-free rejoining, end-joining fidelity is decreased to varying extents among mismatched non-complementary ends. End structure also influences the kinetics of repair, accurately recircularized substrates for blunt and complementary termini being detected significantly earlier than for mismatched non-complementary ends. These results suggest that the end-joining process is composed of an early component, capable of efficiently repairing substrates requiring a single ligation event, and a late component, involved in the rejoining of complex substrates requiring multiple processing steps. Finally, these two types of repair events may have different genetic requirements as suggested by the finding that exposure of cells to wortmannin, a potent inhibitor of phosphatidylinositol 3-related kinases (PI 3-related kinases), blocks the repair of complex substrates while having little or no effect on those requiring a simple ligation event.  相似文献   

9.
Non-homologous end-joining (NHEJ) is the predominant repair pathway for DNA double-strand breaks (DSBs) in vertebrates and also plays a crucial role in V(D)J recombination of immunoglobulin genes. Cernunnos/XLF is a newly identified core factor for NHEJ, and its defect causes a genetic disease characterized by neural disorders, immunodeficiency and increased radiosensitivity. Cernunnos/XLF has at least two distinct functions in NHEJ. Cernunnos/XLF interacts with and stimulates the XRCC4/DNA ligase IV complex, which acts at the final ligation step in NHEJ. In living cells, Cernunnos/XLF quickly responds to DSB induction and accumulates at damaged sites in a Ku-dependent but XRCC4-independent manner. These observations indicate that Cernunnos/XLF plays a unique role in bridging damage sensing and DSB rejoining steps of NHEJ. Recent crystallographic analyses of the homodimeric Cernunnos/XLF protein provide structural insights into the Cernunnos/XLF functions. These studies offer important clues toward understanding the molecular mechanism for NHEJ-defective diseases.  相似文献   

10.
Although major efforts in elucidating different DNA double-strand break (DSB) repair pathways and their contribution to accurate repair or misrepair have been made, little is known about the influence of chromatin structure on the fidelity of DSB repair. Here, the repair of ionizing radiation-induced DSBs was investigated in heterochromatic centromeric regions of human cells in comparison with other genomic locations. A hybridization assay was applied that allows the quantification of correct DSB rejoining events in specific genomic regions by measuring reconstitution of large restriction fragments. We show for two primary fibroblast lines (MRC-5 and 180BR) and an epithelial tumor cell line that restriction fragment reconstitution is considerably more efficient in the centromere than in average genomic locations. Importantly, however, DNA ligase IV-deficient 180BR cells show, compared with repair-proficient MRC-5 cells, impaired restriction fragment reconstitution both in average DNA and in the centromere. Thus, the efficient repair of DSBs in centromeric DNA is dependent on functional non-homologous end joining. It is proposed that the condensed chromatin state in the centromere limits the mobility of break ends and leads to enhanced restriction fragment reconstitution by increasing the probability for rejoining correct break ends.  相似文献   

11.
We aimed to clarify if heat pretreatment could protect Chlamydomonas reinhardtii cells from gamma rays DNA damaging action. It was studied whether: (1) heat pretreatment could accelerate DNA DSB rejoining; (2) chloroplast chaperones (HSP70B, HSP90C) could be involved in protection from radiation-induced DNA DSB.It was obtained that heat pretreatment (37–42 °C) induced minor DNA DSB levels which might be insufficient as signals for DNA DSB repair induction. No correlation between chaperones overproduction and DNA DSB rejoining was shown. These are probably the first data that HSP70B and HSP90C do not protect DNA against radiation-induced damage in a plant model system.  相似文献   

12.
The influence of cell cycle phase on the fidelity of DNA double-strand break (DSB) repair is largely unknown. We investigated the rejoining of correct and incorrect DSB ends in synchronized populations of Chinese hamster ovary cells irradiated with 80 Gy X-rays. A specialized pulsed-field gel electrophoresis assay based on quantitative Southern hybridization of individual large restriction fragments was employed to measure correct DSB rejoining by monitoring restriction fragment reconstitution. Total DSB repair, representing both correct and incorrect rejoining, was analyzed using conventional pulsed-field gel electrophoresis. We present evidence that restriction fragment reconstitution is more efficient in G2 than in G1, suggesting that DSB rejoining in G2 proceeds with higher fidelity. DNA-dependent protein kinase-deficient V3 and xrs-6 cells show impaired restriction fragment reconstitution in G1 and G2 compared with wild-type AA8 and K1 cells, demonstrating that the enhanced fidelity of DSB rejoining in G2 occurs by non- homologous end joining. Additionally, homologous recombination-deficient irs1SF and wild-type cells show identical DSB rejoining in G1 and G2. We propose that structural characteristics of G2 phase chromatin, such as the cohesion of sister chromatids in replicated chromatin, limit the mobility of radiation-induced break ends and enhance the fidelity of DSB rejoining.  相似文献   

13.
Radiobiological models, such as the lethal and potentially lethal (LPL) model and the repair-misrepair (RMR) model, have been reasonably successful at explaining the cell killing effects of radiation. However, the models have been less successful at relating cell killing to the formation, repair and misrepair of double-strand breaks (DSBs), which are widely accepted as the main type of DNA damage responsible for radiation-induced cell killing. A fully satisfactory model should be capable of predicting cell killing for a wide range of exposure conditions using a single set of model parameters. Moreover, these same parameters should give realistic estimates for the initial DSB yield, the DSB rejoining rate, and the residual number of unrepaired DSBs after all repair is complete. To better link biochemical processing of the DSB to cell killing, a two-lesion kinetic (TLK) model is proposed. In the TLK model, the family of all possible DSBs is subdivided into simple and complex DSBs, and each kind of DSB may have its own repair characteristics. A unique aspect of the TLK model is that break ends associated with both kinds of DSBs are allowed to interact in pairwise fashion to form irreversible lethal and nonlethal damages. To test the performance of the TLK model, nonlinear optimization methods are used to calibrate the model based on data for the survival of CHO cells for an extensive set of single-dose and split-dose exposure conditions. Then some of the postulated mechanisms of action are tested by comparing measured and predicted estimates of the initial DSB yield and the rate of DSB rejoining. The predictions of the TLK model for CHO cell survival and the initial DSB yield and rejoining rate are all shown to be in good agreement with the measured data. Studies suggest a yield of about 25 DSBs Gy(-1) cell(-1). About 20 DSBs Gy(-1) cell(-1) are rejoined quickly (15-min repair half-time), and 4 to 6 DSBs Gy(-1) cell(-1) are rejoined very slowly (10- to 15-h repair half-time). Both the slowly and fast-rejoining DSBs make substantial contributions to the killing of CHO cells by radiation. Although the TLK model provides a much more satisfactory formalism to relate biochemical processing of DSBs to cell killing than did the earlier kinetic models, some small differences among the measured and predicted CHO cell survival and DSB rejoining data suggest that additional factors and processes not considered in the present work may affect biochemical processing of DSBs and hence cell killing.  相似文献   

14.
Molecular mechanisms of DNA double-strand break repair   总被引:24,自引:0,他引:24  
DNA double-strand breaks (DSBs) are major threats to the genomic integrity of cells. If not taken care of properly, they can cause chromosome fragmentation, loss and translocation, possibly resulting in carcinogenesis. Upon DSB formation, cell-cycle checkpoints are triggered and multiple DSB repair pathways can be activated. Recent research on the Nijmegen breakage syndrome, which predisposes patients to cancer, suggests a direct link between activation of cell-cycle checkpoints and DSB repair. Furthermore, the biochemical activities of proteins involved in the two major DSB repair pathways, homologous recombination and DNA end-joining, are now beginning to emerge. This review discusses these new findings and their implications for the mechanisms of DSB repair.  相似文献   

15.
The role of Ku80 in the repair of DNA double-strand breaks (DSBs) was examined in fibroblasts derived from a Ku80 knockout mouse model described by Nussenzweig et al. (Nature 382, 551-555, 1996). Primary fibroblasts from Ku80+/+ and Ku80-/- mice were immortalized by transfection with plasmids containing either the human MYC proto-oncogene or the Simian virus 40 (SV40) T antigen and were used to measure induction and rejoining of DSBs after exposure to ionizing radiation. The number of DSBs in the cells was quantified by either asymmetric field-inversion gel electrophoresis (AFIGE) or clamped homogeneous electrical-field gel electrophoresis (CHEF). The latter method was introduced for a more reliable quantification of repair even when DNA degradation occurs in a fraction of the irradiated cell population during the postirradiation incubation time. The results confirm that Ku80-deficient mouse fibroblasts are sensitive to ionizing radiation and demonstrate that the increased radiosensitivity may result from a deficiency in DSB rejoining. The results further indicate that unless techniques are employed that allow for distinction between DNA degradation and DNA repair, erroneous conclusions may be drawn regarding the potential of cells to repair DSBs.  相似文献   

16.
DNA double-strand break repair by homologous recombination   总被引:11,自引:0,他引:11  
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.  相似文献   

17.
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.  相似文献   

18.
The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was applied to analyze the effect of Wortmannin (WM) in the rejoining kinetics of ionizing radiation-induced DNA double-strand breaks (DSBs) in the whole genome and in the long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cell lines. The results indicate that the ITRS blocks from wild-type Chinese hamster cell lines, CHO9 and V79B, exhibit a slower initial rejoining rate of ionizing radiation-induced DSBs than the genome overall. Neither Rad51C nor the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) activities, involved in homologous recombination (HR) and in non-homologous end-joining (NHEJ) pathways of DSB repair respectively, influenced the rejoining kinetics within ITRS in contrast to DNA sequences in the whole genome. Nevertheless, DSB removal rate within ITRS was decreased in the absence of Ku86 activity, though at a lower affectation level than in the whole genome, thus homogenizing both rejoining kinetics rates. WM treatment slowed down the DSB rejoining kinetics rate in ITRS, this effect being more pronounced in the whole genome, resulting in a similar pattern to that of the Ku86 deficient cells. In fact, no WM effect was detected in the Ku86 deficient Chinese hamster cells, so probably WM does not add further impairment in DSB rejoining than that resulted as a consequence of absence of Ku activity. The same slowing effect was also observed after treatment of Rad51C and DNA-PKcs defective hamster cells by WM, suggesting that: (1) there is no potentiation of the HR when the NHEJ is impaired by WM, either in the whole genome or in the ITRS, and (2) that this impairment may probably involve more targets than DNA-PKcs. These results suggest that there is an intragenomic heterogeneity in DSB repair, as well as in the effect of WM on this process.  相似文献   

19.
The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high-LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9+/-0.5 h and a slow component with a half-life of 16+/-9 h. For alpha particles, a fast component with a half-life of 0.7+/-0.4 h and a slow component with a half-life of 12+/-5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37+/-0.12) relative to low-LET radiation (0.22+/-0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites.  相似文献   

20.
The XR-V9B mutant of Chinese hamster V79 cells which exhibits hypersensitivity to ionizing radiation was isolated by the replica plating technique. The increased sensitivity of XR-V9B cells to X rays (approximately 4-fold, as judged by the D10) was accompanied by increased sensitivity to other DNA-damaging agents such as bleomycin (approximately 17-fold), VP16 (approximately 6-fold), and adriamycin (approximately 5-fold). Only a slightly increased sensitivity was observed after exposure to UV radiation, MMS, or mitomycin C (1.4-, 1.7-, and 2-fold, respectively). As measured by neutral elution after exposure to X rays, XR-V9B cells showed a defect in the rejoining of double-strand breaks (DSBs); after 4 h of repair more than 50% of DSBs remained in comparison to 5% in wild-type cells. No difference was observed in the kinetics of single-strand break rejoining between XR-V9B and wild-type cells, as measured by alkaline elution. To determine whether XR-V9B represents a new complementation group among ionizing radiation-sensitive Chinese hamster cell mutants defective in DSB repair, XR-V9B cells were fused with XR-V15B, XR-1, and V-3 cells, which have impaired DSB rejoining and belong to three different complementation groups. In all cases, the derived hybrids regained the sensitivity of wild-type cells when exposed to X rays, indicating that the XR-V9B mutant represents a new fourth complementation group among X-ray-sensitive Chinese hamster cell mutants defective in DSB repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号