首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This project involved the synthesis of N-hexanoyl chitosan or simply modified chitosan (MC) stabilized iron oxide nanoparticles (MC-IOPs) and the biological evaluation of MC-IOPs. IOPs containing MC were prepared using conventional methods, and the extent of cell uptake was evaluated using mouse macrophages cell line (RAW cells). MC-IOPs were found to rapidly associate with the RAW cells, and saturation was typically reached within the 24 h of incubation at 37°C. Nearly 8.53 ± 0.31 pg iron/cell were bound or internalized at saturation. From these results, we conclude that MC-IOPs effectively deliver into RAW cells in vitro and we also hope MC-IOPs can be used for MRI enhancing agents in biomedical fields.  相似文献   

2.
The purpose of this study was to determine the cellular distribution and degradation in rat liver following intravenous injection of superparamagnetic iron oxide nanoparticles used for magnetic resonance imaging (NC100150 Injection). Relaxometric and spectrophotometric methods were used to determine the concentration of the iron oxide nanoparticles and their degradation products in isolated rat liver parenchymal, endothelial and Kupffer cell fractions. An isolated cell phantom was also constructed to quantify the effect of the degradation products on the loss of MR signal in terms of decreased transverse relaxation times, T2*. The results of this study show that iron oxide nanoparticles found in the NC100150 Injection were taken up and distributed equally in both liver endothelial and Kupffer cells following a single 5 mg Fe/kg body wt. bolus injection in rats. Whereas endothelial and Kupffer cells exhibited similar rates of uptake and degradation, liver parenchymal cells did not take up the NC100150 Injection iron oxide particles. Light-microscopy methods did, however, indicate an increased iron load, presumably as ferritin/hemosiderin, within the hepatocytes 24 h post injection. The study also confirmed that compartmentalisation of ferritin/hemosiderin may cause a significant decrease in the MRI signal intensity of the liver. In conclusion, the combined results of this study imply that the prolonged presence of breakdown product in the liver may cause a prolonged imaging effect (in terms of signal loss) for a time period that significantly exceeds the half-life of NC100150 Injection iron oxide nanoparticles in liver.  相似文献   

3.

Background

Magnetic resonance imaging (MRI) is a promising tool for monitoring stem cell-based therapy. Conventionally, cells loaded with ironoxide nanoparticles appear hypointense on MR images. However, the contrast generated by ironoxide labeled cells is neither specific due to ambiguous background nor quantitative. A strategy to overcome these drawbacks is 19F MRI of cells labeled with perfluorocarbons. We show here for the first time that human neural stem cells (NSCs), a promising candidate for clinical translation of stem cell-based therapy of the brain, can be labeled with 19F as well as detected and quantified in vitro and after brain implantation.

Methodology/Principal Findings

Human NSCs were labeled with perfluoropolyether (PFPE). Labeling efficacy was assessed with 19F MR spectroscopy, influence of the label on cell phenotypes studied by immunocytochemistry. For in vitro MRI, NSCs were suspended in gelatin at varying densities. For in vivo experiments, labeled NSCs were implanted into the striatum of mice. A decrease of cell viability was observed directly after incubation with PFPE, which re-normalized after 7 days in culture of the replated cells. No label-related changes in the numbers of Ki67, nestin, GFAP, or βIII-tubulin+ cells were detected, both in vitro and on histological sections. We found that 1,000 NSCs were needed to accumulate in one image voxel to generate significant signal-to-noise ratio in vitro. A detection limit of ∼10,000 cells was found in vivo. The location and density of human cells (hunu+) on histological sections correlated well with observations in the 19F MR images.

Conclusion/Significance

Our results show that NSCs can be efficiently labeled with 19F with little effects on viability or proliferation and differentiation capacity. We show for the first time that 19F MRI can be utilized for tracking human NSCs in brain implantation studies, which ultimately aim for restoring loss of function after acute and neurodegenerative disorders.  相似文献   

4.
Background aimsMesenchymal stromal cells (MSC) are the focus of research in regenerative medicine aiming at the regulatory approval of these cells for specific indications. To cope with the regulatory requirements for somatic cell therapy, novel approaches that do not interfere with the natural behavior of the cells are necessary. In this context in vivo magnetic resonance imaging (MRI) of labeled MSC could be an appropriate tool. Cell labeling for MRI with a variety of different iron oxide preparations is frequently published. However, most publications lack a comprehensive assessment of the non-interference of the contrast agent with the functionality of the labeled MSC, which is a prerequisite for the validity of cell-tracking via MRI.MethodsWe studied the effects of iron oxide–poly(l-lactide) nanoparticles in MSC with flow cytometry, transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), Prussian blue staining, CyQuant® proliferation testing, colony-forming unit–fibroblast (CFU-F) assays, flow chamber adhesion testing, immunologic tests and differentiation tests. Furthermore iron-labeled MSC were studied by MRI in agarose phantoms and Wistar rats.ResultsIt could be demonstrated that MSC show rapid uptake of nanoparticles and long-lasting intracellular persistence in the endosomal compartment. Labeling of the MSC with these particles has no influence on viability, differentiation, clonogenicity, proliferation, adhesion, phenotype and immunosuppressive properties. They show excellent MRI properties in agarose phantoms and after subcutaneous implantation in rats over several weeks.ConclusionsThese particles qualify for studying MSC homing and trafficking via MRI.  相似文献   

5.
Antibody-conjugated iron oxide nanoparticles offer a specific and sensitive tool to enhance magnetic resonance (MR) images of both local and metastatic cancer. Prostate-specific membrane antigen (PSMA) is predominantly expressed on the neovasculature of solid tumors and on the surface of prostate cells, with enhanced expression following androgen deprivation therapy. Biotinylated anti-PSMA antibody was conjugated to streptavidin-labeled iron oxide nanoparticles and used in MR imaging and confocal laser scanning microscopic imaging studies using LNCaP prostate cancer cells. Labeled iron oxide nanoparticles are internalized by receptor-mediated endocytosis, which involves the formation of clathrin-coated vesicles. Endocytosed particles are not targeted to the Golgi apparatus for recycling but instead accumulate within lysosomes. In T(1)-weighted MR images, the signal enhancement owing to the magnetic particles was greater for cells with magnetic particles bound to the cell surface than for cells that internalized the particles. However, the location of the particles (surface vs internal) did not significantly alter their effect on T(2)-weighted images. Our findings indicate that targeting prostate cancer cells using PSMA offers a specific and sensitive technique for enhancing MR images.  相似文献   

6.
Tracking the distribution and differentiation of stem cells by high-resolution imaging techniqueswould have significant clinical and research implications.In this study,a model cell-penetrating peptide wasused to carry gadolinium particles for magnetic resonance imaging (MRI) of mesenchymal stem cells (MSCs).MSCs were isolated from rat bone marrow and identified by osteogenic differentiation in vitro.The cell-penetrating peptide labeled with fluorescein-5-isothiocyanate (FITC) and gadolinium was synthesized by asolid-phase peptide synthesis method.Fluorescein imaging analysis confirmed that this new peptide couldinternalize into the cytoplasm and nucleus at room temperature,4℃ and 37℃.Gadolinium were efficientlyinternalized into mesenchymal stem cells by the peptide in a time or concentration-dependent manner,resulting in intercellular shortening of longitudinal relaxation enhancements,which were obviously detectedby 1.5 Tesla Magnetic Resonance Imaging.Cytotoxicity assay and flow cytometric analysis showed thatthe intercellular contrast medium incorporation did not affect cell viability at the tested concentrations.Thein vitro experiment results suggested that the new constructed peptides could be a vector for trackingMSCs.  相似文献   

7.
Positive T? contrast using gadolinium (Gd) contrast agents can potentially improve detection of labeled cells on magnetic resonance imaging (MRI). Recently, gadolinium oxide (Gd?O?) nanoparticles have shown promise as a sensitive T? agent for cell labeling at clinical field strengths compared to conventional Gd chelates. The objective of this study was to investigate Gado CELLTrack, a commercially available Gd?O? nanoparticle, for cell labeling and MRI at 7 T. Relaxivity measurements yielded r1 = 4.7 s?1 mM?1 and r?/r? = 6.2. Human aortic endothelial cells were labeled with Gd?O? at various concentrations and underwent MRI from 1 to 7 days postlabeling. The magnetic resonance relaxation times T? and T? of labeled cell pellets were measured. Cellular contrast agent uptake was quantified by inductively coupled plasma-atomic emission spectroscopy, which showed very high uptake compared to conventional Gd compounds. MRI demonstrated significant positive T? contrast and stable labeling on cells. Enhancement was optimal at low Gd concentrations, attained in the 0.02 to 0.1 mM incubation concentration range (corresponding cell uptake was 7.26 to 34.1 pg Gd/cell). Cell viability and proliferation were unaffected at the concentrations tested and up to at least 3 days postlabeling. Gd?O? is a promising sensitive and stable positive contrast agent for cellular MRI at 7 T.  相似文献   

8.
Modularly assembled targeting nanoparticles were synthesized through self-assembly of targeting moieties on surfaces of functional nanoparticles. Specific molecular recognition of nickel nitrilotriacetate on Fe3O4 nanoparticles with hexahistidine tag on RGD4C peptides results in precisely controlled orientation of the targeting peptides. Better selectivity of the self-assembled RGD4C-Fe3O4 nanoparticles targeting oral cancer cells than that achievable through a conventional chemical cross-link strategy was demonstrated by means of atomic absorption spectrometry (AAS). An oral cancer hamster model was applied to reveal specific in vivo targeting and MR molecular imaging contrast in cancer lesions expressing alphavbeta3 integrin. Both AAS and MRI revealed that the self-assembled nanoparticles improved the targeting efficiency and reduced the hepatic uptake as compared with the conventional chemical cross-link particles. We investigated the biosafety, biodistribution, and kinetics of the nanoparticles and found that the nanoparticles were significantly cleared from the liver and kidneys after one week. By recombining the desired targeting moiety and various functional nanoparticles through self-assembly, this new modularly designed platform has the capability of enhancing the efficiency of targeted diagnosis and therapies for a wide spectrum of biomedical applications.  相似文献   

9.
A novel bimodal fluorescent and paramagnetic liposome is described for cellular labeling. In this study, we show the synthesis of a novel gadolinium lipid, Gd.DOTA.DSA, designed for liposomal cell labeling and tumor imaging. Liposome formulations consisting of this lipid were optimized in order to allow for maximum cellular entry, and the optimized formulation was used to label HeLa cells in vitro. The efficiency of this novel bimodal Gd-liposome formulation for cell labeling was demonstrated using both fluorescence microscopy and magnetic resonance imaging (MRI). The uptake of Gd-liposomes into cells induced a marked reduction in their MRI T 1 relaxation times. Fluorescence microscopy provided concomitant proof of uptake and revealed liposome internalization into the cell cytosol. The optimized formulation was also found to exhibit minimal cytotoxicity and was shown to have capacity for plasmid DNA (pDNA) transfection. A further second novel neutral bimodal Gd-liposome is described for the labeling of xenograft tumors in vivo utilizing the enhanced permeation and retention effect (EPR). Balb/c nude mice were inoculated with IGROV-1 cells, and the resulting tumor was imaged by MRI using these in vivo Gd-liposomes formulated with low charge and a poly(ethylene glycol) (PEG) calyx for long systemic circulation. These Gd-liposomes which were less than 100 nm in size were shown to accumulate in tumor tissue by MRI, and this was also verified by fluorescence microscopy of histology samples. Our in vivo tumor imaging results demonstrate the effectiveness of MRI to observe passive targeting of long-term circulating liposomes to tumors in real time, and allow for MRI directed therapy, wherein the delivery of therapeutic genes and drugs to tumor sites can be monitored while therapeutic effects on tumor mass and/or size may be simultaneously observed, quantitated, and correlated.  相似文献   

10.
11.
12.
A novel dual-labeled nanoparticle for use in labeling and tracking cells in vivo is described. We report the construction and characterization of these gadolinium-rhodamine nanoparticles. These particles are constructed from lipid monomers with diacetylene bonds that are sonicated and photolyzed to form polymerized nanoparticles. Cells are efficiently labeled with these nanoparticles. We have inoculated labeled tumor cells subcutaneouosly into the flanks of C3H mice and have been able to image these labeled tumor cells via MRI and optical imaging. Furthermore, the labeled tumor cells can be visualized via fluorescent microscopy after tissue biopsy. Our results suggest that these nanoparticles could be used to track cells in vivo. This basic platform can be modified with different fluorophores and targeting agents for studying metastisic cell, stem cell, and immune cell trafficking among other applications.  相似文献   

13.
Magnetic resonance imaging (MRI) has rapidly become an important tool in clinical medicine and biological research. Its functional variant (functional magnetic resonance imaging; fMRI) is currently the most widely used method for brain mapping and studying the neural basis of human cognition. While the method is widespread, there is insufficient knowledge of the physiological basis of the fMRI signal to interpret the data confidently with respect to neural activity. This paper reviews the basic principles of MRI and fMRI, and subsequently discusses in some detail the relationship between the blood-oxygen-level-dependent (BOLD) fMRI signal and the neural activity elicited during sensory stimulation. To examine this relationship, we conducted the first simultaneous intracortical recordings of neural signals and BOLD responses. Depending on the temporal characteristics of the stimulus, a moderate to strong correlation was found between the neural activity measured with microelectrodes and the BOLD signal averaged over a small area around the microelectrode tips. However, the BOLD signal had significantly higher variability than the neural activity, indicating that human fMRI combined with traditional statistical methods underestimates the reliability of the neuronal activity. To understand the relative contribution of several types of neuronal signals to the haemodynamic response, we compared local field potentials (LFPs), single- and multi-unit activity (MUA) with high spatio-temporal fMRI responses recorded simultaneously in monkey visual cortex. At recording sites characterized by transient responses, only the LFP signal was significantly correlated with the haemodynamic response. Furthermore, the LFPs had the largest magnitude signal and linear systems analysis showed that the LFPs were better than the MUAs at predicting the fMRI responses. These findings, together with an analysis of the neural signals, indicate that the BOLD signal primarily measures the input and processing of neuronal information within a region and not the output signal transmitted to other brain regions.  相似文献   

14.
15.
Background aimsAssessing mesenchymal stromal cells (MSCs) after grafting is essential for understanding their migration and differentiation processes. The present study sought to evaluate via cellular magnetic resonance imaging (MRI) if transplantation route may have an effect on MSCs engrafting to fibrotic liver of rats.MethodsRat MSCs were prepared, labeled with superparamagnetic iron oxide and scanned with MRI. Labeled MSCs were transplanted via the portal vein or vena caudalis to rats with hepatic fibrosis. MRI was performed in vitro before and after transplantation. Histologic examination was performed. MRI scan and imaging parameter optimization in vitro and migration under in vivo conditions were demonstrated.ResultsStrong MRI susceptibility effects could be found on gradient echo-weighted, or T21-weighted, imaging sequences from 24 h after labeling to passage 4 of labeled MSCs in vitro. In vivo, MRI findings of the portal vein group indicated lower signal in liver on single shot fast spin echo-weighted, or T2-weighted, imaging and T21-weighted imaging sequences. The low liver MRI signal increased gradually from 0–3 h and decreased gradually from 3 h to 14 days post-transplantation. The distribution pattern of labeled MSCs in liver histologic sections was identical to that of MRI signal. It was difficult to find MSCs in tissues near the portal area on day 14 after transplantation; labeled MSCs appeared in fibrous tuberculum at the edge of the liver. No MRI signal change and a positive histologic examination were observed in the vena caudalis group.ConclusionsThe portal vein route seemed to be more beneficial than the vena caudalis on MSC migration to fibrotic liver of rats via MRI.  相似文献   

16.
Complexes of paramagnetic ions that are tissue-, organ- or tumor-specific will supplement routine magnetic resonance imaging, help assess organ perfusion, and in some cases assess specific organ function. Studies are described in animals and man and the results suggest that dilute iron solutions may be useful for contrast-enhancement of the gastrointestinal tract; that ferrioxamine B, a stable ferric iron complex, appears to permit identification of focal blood-brain-barrier defects and to assess renal excretory function; and that gadolinium-DTPA can produce contrast-enhancement of a variety of lesions. In addition, gadolinium-DTPA can detect a breakdown in the blood-brain-barrier and can delineate functioning myocardium in the setting of acute ischemia.  相似文献   

17.
Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging.  相似文献   

18.
Human pluripotent stem cells (hPSCs) have shown the ability to self-organize into different types of neural organoids (e.g., whole brain organoids, cortical spheroids, midbrain organoids etc.) recently. The extrinsic and intrinsic signaling elicited by Wnt pathway, Hippo/Yes-associated protein (YAP) pathway, and extracellular microenvironment plays a critical role in brain tissue morphogenesis. This article highlights recent advances in neural tissue patterning from hPSCs, in particular the role of Wnt pathway and YAP activity in this process. Understanding the Wnt-YAP interactions should provide us the guidance to predict and modulate brain-like tissue structure through the regulation of extracellular microenvironment of hPSCs.  相似文献   

19.
Negative-contrast magnetic resonance imaging (MRI) methods utilizing magnetic susceptibility contrast agents have become one of the most widely used approaches in cellular imaging research. However, visualizing and tracking super-paramagnetic iron oxide nanoparticle (SPIO)-labeled cells on the basis of negative-contrast can limit specificity and sensitivity. Therefore, there has been a strong motivation to explore MRI methods for cellular imaging with either positive or dual contrast (both positive and negative) for identifying labeled cells; these methods offer the potential to improve significantly the sensitivity and specificity of MRI-based cell-tracking approaches. In this review, current state-of-the-art positive- and dual-contrast MRI techniques and contrast agents are described specifically for applications involving in vivo cellular tracking and imaging.  相似文献   

20.
For the purpose of successfully monitoring labeled cells, optimum labeling efficiency without any side effect is a prerequisite. Magnetic cellular imaging is a new and growing field that allows the visualization of implanted cells in vivo. Herein, superparamagnetic iron oxide (SPIO) nanoparticles were conjugated with a non-toxic protein transduction domain (PTD), identified by the authors and termed low molecular weight protamine (LMWP), to generate efficient and non-toxic cell labeling tools. The cells labeled with LMWP-SPIO presented the highest iron content compared to those labeled with naked SPIO and the complex of SPIO with poly-l-lysine, which is currently used as a transfection agent. In addition to the iron content assay, Prussian staining and confocal observation demonstrated the highest intracellular LMWP-SPIO presence, and the labeling procedure did not alter the cell differentiation capacity of mesenchymal stem cells. Taken together, cell permeable magnetic nanoparticles conjugated with LMWP can be suggested as labeling tools for efficient magnetic imaging of transplanted cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号