首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of acute treatment with p-chloramphetamine, d-fenfluramine, and reserpine on intracellular (brain tissue and whole blood) and extracellular (CSF and platelet-free plasma) compartments of 5-hydroxytryptamine (5-HT) in the brain and blood of the same rats have been examined. These treatments affected 5-HT in brain tissue and whole blood similarly (r = 0.823). Reserpine significantly reduced both intracellular pools at 2 and 24 h. p-Chloroamphetamine and d-fenfluramine were more effective on brain tissue 5-HT. The concentration of 5-HT in CSF was significantly increased by all treatments. p-Chloroamphetamine induced a dramatic 70-fold increase of CSF 5-HT, paralleling a 42% decrease in brain tissue. d-Fenfluramine significantly increased CSF 5-HT to 212% of controls and reduced whole brain 5-HT (-23%). The effects of p-chloroamphetamine and d-fenfluramine on 5-HIAA in brain, CSF, and plasma were nonsignificant. Individual values of 5-hydroxyindoleacetic acid (5-HIAA) in CSF and brain were highly correlated (r = 0.855), indicating that CSF 5-HIAA reflects well the concentration of 5-HIAA in brain tissue. Yet the intra- and extracellular concentrations of 5-HIAA were unrelated to the 5-HT changes. This indicates that CSF 5-HIAA does not reflect the active (extracellular) compartment of 5-HT in brain.  相似文献   

2.
Loeffler  D.A.  LeWitt  P.A.  Juneau  P.L.  Camp  D.M.  DeMaggio  A.J.  Havaich  M.K.  Milbury  P.E.  Matson  W.R. 《Neurochemical research》1998,23(12):1521-1525
Parkinson's disease (PD) is characterized by decreased striatal dopamine, but serotonin (5-HT) is also reduced. Because 5-HT decreases following a single levodopa injection, levodopa has been suggested to contribute to PD's serotonergic deficits. However, in a recent study, rat striatal serotonin levels were reported to increase following 15-day levodopa administration. To address this issue, we administered levodopa (50 mg/kg) to rabbits for 5 days, then measured serotonin, its precursors tryptophan and 5-hydroxytryptophan (5-HTP), and its major metabolite 5-hydroxyindole-acetic acid (5-HIAA) in striatum and CSF. Striatal serotonin and tryptophan were unchanged, while 5-HTP and 5-HIAA increased 4- and 7-fold, respectively. CSF 5-HTP and 5-HIAA were also significantly increased. In levodopa-treated animals, 5-HTP concentrations were moderately correlated (r = 0.679) between striatum and CSF, while weak correlations were present between striatal and CSF concentrations of both serotonin and 5-HIAA. These results suggest that repeated levodopa treatment increases striatal serotonin turnover without changing serotonin content. However, levodopa-induced alterations in striatal serotonin metabolism may not be accurately reflected by measurement of serotonin and 5-HIAA in CSF.  相似文献   

3.
Abstract— —Normal values for the concentration of 5-HT, 5-HIAA and tryptophan are established in various regions of the dog brain. After administration of tryptophan by intravenous injection the rise and fall of 5-HT and 5-HIAA were estimated at 1, 2 and 4 hr. Best fit quadratic regression curves obtained by computer programme were fitted to the data. Similar tryptophan doses were given to dogs and the 5-HIAA concentration estimated in the cisternal CSF. Quadratic regression curves fitted to these values show that the concentration of 5-HIAA in CSF reflects the changes of 5-HIAA in the brain and in particular in the brain stem. a-Methyl dopa pretreatment blocked the rise of 5-hydroxyindoles in brain and CSF and appeared to inhibit tryptophan hydroxylase as well as decarboxylase.  相似文献   

4.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

5.
The relationships between the concentration of serotonin (5-HT) and related metabolites in human blood and CSF have been studied. Plasma tryptophan (TP), 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), and indoleacetic acid (IAA), whole-blood 5-HT, and CSF TP, 5-HT, 5-HIAA, IAA, homovanillic acid, and 3-methoxy-4-hydroxyphenylethylene glycol were determined in 35 unmedicated outpatients who underwent minor surgical operations and had no history of psychiatric or neurological illnesses. Significant correlations were found between the serotoninergic parameters analyzed in blood and CSF. Plasma free 5-HT correlated significantly with CSF 5-HT (r = 0.411, p less than 0.02), and plasma 5-HIAA correlated with the CSF 5-HIAA/5-HT ratio (r = 0.508, p less than 0.004). The concentration of 5-HIAA in CSF correlated with the plasma 5-HIAA/5-HT ratio (r = 0.405, p less than 0.026) (which can be taken as an index of monoamine oxidase type A activity in peripheral tissues) and with the platelet 5-HT/plasma 5-HT ratio (r = 0.375, p less than 0.05). The concentrations of IAA in CSF and plasma were strongly correlated (r = 0.899, p less than 0.001). The significance of these results and their relationship to the use of "in vivo" measures of 5-HT and related metabolites in plasma and platelets as an index of serotoninergic function in affective disorders are discussed.  相似文献   

6.
The effects of tryptophan administration on neurochemical estimates of synthesis [5-hydroxytryptophan (5-HTP) accumulation following administration of a decarboxylase inhibitor], storage [5-hydroxytryptamine (5-HT) concentrations], and metabolism [5-hydroxyindoleacetic acid (5-HIAA) concentrations] of 5-HT in selected regions of the hypothalamus were determined using HPLC coupled to an electrochemical detector. Tryptophan methyl ester HCl (30-300 mg/kg i.p.) produced a dose-dependent increase in the rate of 5-HTP accumulation throughout the hypothalamus but had no effect on the rate of accumulation of 3,4-dihydroxyphenylalanine. Peak 5-HTP levels were attained by 30 min following administration of tryptophan (100 mg/kg i.p.) and were maintained for an additional 60 min. Tryptophan also produced concomitant dose-dependent increases in 5-HT and 5-HIAA concentrations in these same regions without changes in the 5-HIAA/5-HT ratio. These results indicate that exogenous tryptophan administration selectively increases the synthesis, storage, and metabolism of 5-HT in the hypothalamus without altering the synthesis of catecholamines. Inhibition of 5-HT uptake with chlorimipramine or fluoxetine produced modest (10-40%) reductions in 5-HIAA concentrations throughout the hypothalamus, revealing that only a minor portion of 5-HIAA is derived from released and recaptured 5-HT, whereas the major portion of this metabolite reflects intraneuronal metabolism of unreleased 5-HT. In both chlorimipramine- and fluoxetine-treated rats, 5-HIAA concentrations were significantly increased by tryptophan administration, indicating that the increase in synthesis of 5-HT following precursor loading is accompanied by an increase in the intraneuronal metabolism of 5-HT.  相似文献   

7.
A simple technique is described for repeated sampling of cerebrospinal fluid (CSF) from the freely moving rat and its use in the determinations of 5-hydroxytryptamine (5-HT) turnover validated. A catheter, constructed from polyethylene tubing (PP10) was implanted via a cranial approach into the cisterna magna and x-ray studies confirmed that the catheter avoided the cerebellum. 5-HT turnover was determined from the rate of rise of 5-hydroxyindoleacetic acid (5-HIAA) in both CSF and brain following an injection of probenecid (200 mg/kg i.p.). Concentrations of 5-HIAA, 5-HT and tryptophan were determined by high pressure liquid chromatography. Turnover values for individual rats were obtained using CSF samples. After p-chlorophenylalanine treatment (when brain 5-HT was depleted by 43%) 5-HT turnover values obtained were comparably reduced whether determined from CSF (-67%) or brain (-74%). Thus differences of rat brain 5-HT turnover are proportionately reflected by CSF measurements. The method for sampling of CSF should be applicable in a wide range of pharmacological and physiological situations.  相似文献   

8.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

9.
Abstract: The effects of intracerebroventricular administration of the 5-hydroxytryptamine (5-HT)1A agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.1 pmol) on adrenocortical and neurochemical responses to stress were examined in conscious male rats. The following stress paradigms were used: acoustic stimulation (105 dB for 2 min); footshock (0.2 mA, five shocks over 5 min); conditioned fear (animals placed in a footshock chamber for 5 min, 24 h after footshock); restraint (5 min); intraperitoneal (i.p.) injection of recombinant human interleukin-1α (rHu-IL-1α, 20 µg/kg); and injection of cocaine hydrochloride (20 mg/kg, i.p.). As previously shown, 8-OH-DPAT was able to attenuate the adrenocortical response to acoustic stress, conditioned fear, rHu-IL-1α, and cocaine administration. Cocaine decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT and dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratios and norepinephrine (NE) concentration in the prefrontal cortex, hypothalamus, and brainstem in all experiments, and 8-OH-DPAT reversed the changes in DOPAC/DA ratio without affecting 5-HIAA/5-HT ratios or NE content. 8-OH-DPAT alone had no effect on these parameters, although it decreased NE content in the prefrontal cortex in several experiments, and in the brainstem in one experiment. Significant decreases in NE content were observed in some brain regions following some of the stressors, but these changes were not generally affected by 8-OH-DPAT. Increases in the 5-HIAA/5-HT and DOPAC/DA ratios were also observed in some brain sites following some stressors, but these changes were not affected by 8-OH-DPAT except in the case of the increased 5-HIAA/5-HT ratio in the prefrontal cortex following the conditioned fear response. These results indicate that although 8-OH-DPAT is able to decrease plasma corticosterone responses following acoustic stress, conditioned fear, rHu-IL-1α, and cocaine administration, these effects do not appear to be related to an action of the 5-HT1A agonist on biogenic amine metabolism. This observation indicates that the predominant effect of 8-OH-DPAT on adrenocortical responses is mediated at postsynaptic sites not involved in the regulation of cerebral biogenic amine metabolism.  相似文献   

10.
The in vivo release of endogenous 3,4-dihydroxyphenylethylamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT), and of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), has been measured in the caudate nucleus of the anesthetized rat. A push-pull cannula was implanted into the brain, and the tissue perfused with artificial CSF or artificial CSF containing 5×10–4 M phenylethylamine. The perfusate was collected and analyzed for DA, 5-HT and their metabolites by high performance liquid chromatography with electrochemical detection (HPLC-ECD). DA was released by phenylethylamine at rates significantly greater than its basal rate. 3-MT and 5-HT were undetectable in perfusates collected under basal conditions, but could be detected readlly during phenylethylamine stimulation. DOPAC, HVA and 5-HIAA concentrations were not significantly affected by phenylethylamine. The results suggest (1) that phenylethylamine may exert its behavioural effects through increased release of both DA and 5-HT, and (2) that in vivo measurements of the acid metabolites alone may not be indicative of the release of the amines.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

11.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

12.
Carbaryl (200 mg/kg or 400 mg/kg, p.o.) significantly elevated serotonin (5-HT) (57–109%) and 5-hydroxy-indoleacetic acid (5-HIAA) (60–78%) levels at 1.0 h in the hypothalamic region of adult male rat brain. Further, administration of carbaryl (200 mg/kg, p.o.) for different time intervals (0.5 h, 1.0 h, and 2.0 h) revealed that both 5-HT and 5-HIAA levels elevated maximally at 0.5 h in hypothalamus. These regional 5-HT and 5-HIAA levels were not significantly affected with pentylenetetrazol (PTZ) at any time after its treatment. But simultaneous administration of carbaryl (200 mg/kg, p.o.) and PTZ (60 mg/kg, s.c.) reduced the carbaryl-induced elevation of both 5-HT and 5-HIAA leveis. Measurement of (i) probenecid-induced (200 mg/kg, i.p.) accumulation and (ii) pargyline-induced (75 mg/kg, i.p.) depletion of hypothalamic 5-HIAA level in the absence or presence of carbaryl (200 mg/kg, p.o.) and/or PTZ (60 mg/kg, s.c.) revealed that (a) carbaryl enhanced the synthesis as well as the breakdown of 5-HT, (b) PTZ had no effect on either of these processes of 5-HT, and (c) carbaryl-induced increased catabolism of 5-HT became normal in the presence of PTZ.  相似文献   

13.
This study investigated: (a) the effects of acute 17alpha-methyltestosterone (MT) or 17beta-estradiol (E(2)) administration on norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4, dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) contents in the hypothalamus, telencephalon and pituitary of previtellogenic female rainbow trout Oncorhynchus mykiss, and (b) the effects of chronic MT administration on the levels of these neurotransmitters in these brain regions in immature male rainbow trout. The acute administration of MT induced a significant decrease in pituitary levels of DOPAC as well as in the DOPAC/DA ratio. On the other hand, the acute administration of E(2) induced an increase in pituitary 5-HT levels as well as a decrease in the 5-HIAA/5-HT ratio. In a second experiment, 20 mg MT per kilogram body weight was implanted for 10, 20 or 40 days into sexually immature male rainbow trout. Implanted rainbow trout showed increased testosterone and decreased E(2) levels. In the pituitary, MT induced long-term decreases in NE, DA, DOPAC and 5-HT levels, as well as in the DOPAC/DA ratio. Hypothalamic and telencephalic DA, NE and 5-HT levels were not affected by MT implantation. However, 5-HIAA levels and the 5-HIAA/5-HT ratio were reduced by MT implantation in both brain regions. These results show that chronic treatment with MT exerts both long-term and region-specific effects on NE, DA, and 5-HT contents and metabolism, and thus that this androgen could inhibit pituitary catecholamine and 5-HT synthesis. A possible role for testosterone in the control of pituitary dopaminergic activity and gonadotropin II release is also discussed.  相似文献   

14.
A new procedure was applied to rainbow trout for collecting cerebrospinal fluid (CSF). CSF was withdrawn continuously from the third ventricle at a flow rate of 0.7 microliter/min for up to 6 hr. The 5-HIAA concentrations in trout CSF are temperature-dependent and decrease exponentially after pargyline injection. The computed half-life of 5-HIAA production in CSF is 78 min at 15 degrees C. 5-HIAA concentrations in CSF are considered to reflect serotonin (5-HT) metabolism. The 5-HIAA content in the CSF of trout held in freshwater for several weeks is significantly higher than in trout held in either 1.6 or 3.0% saltwater while sodium content only exhibits a very slight change in the CSF of trout held in 3.0% saltwater. It is hypothesized that 5-HT could participate in the neurally-mediated adaptation to various osmotic conditions.  相似文献   

15.
The present study was undertaken to determine cerebrospinal fluid (CSF) and brain levels of norepinephrine (NE), serotonin (5-HT) and their metabolites--3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA) and 5-hydroxyindole-3-acetic acid (5-HIAA)--in rats pretreated with 6-hydroxydopamine (6-OHDA) or 5,7-dihydroxytryptamine (5,7-DHT). In the 6-OHDA pretreated rats, both CSF and brain concentrations of NE, DOPAC and HVA sustained significant decreases as compared with those in non-treated rats. Positive and significant correlations between CSF and brain levels were observed in respect to NE, DOPAC and HVA. In 5,7-DHT pretreated rats, both CSF and brain concentrations of 5-HT and 5-HIAA were significantly decreased. A positive and significant correlation between CSF and brain levels in respect to 5-HT and 5-HIAA was observed. Further studies were carried out to determine ACh levels of both the CSF and the brain in microspheres (MS)-treated rats, which are used as a model of microembolization. The CSF ACh concentrations in MS-treated groups were significantly decreased as compared with those in non-treated rats. The brain ACh contents also tended to decrease in this group. A positive and significant correlation was observed between CSF and brain levels of ACh. These findings suggest that NE, 5-HT and ACh concentrations in the CSF are direct indications of central noradrenergic, serotonergic and cholinergic nerve activity, respectively.  相似文献   

16.
5-Hydroxytryptamine (5-HT) turnover and dopamine (DA) turnover values were obtained in individual conscious rats by measuring the rates of accumulation of 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in cisternal CSF samples taken from each rat at 0, 30, and 60 min after probenecid (200 mg/kg i.p.) administration. In a separate experiment, 5-HT and DA turnover values were determined in CSF, striatum, and rest of brain of groups of rats killed 0, 30, or 60 min after probenecid. Whole brain turnover values were calculated from striatal and rest of brain values. Mean turnover values using CSF were comparable with both procedures. DA turnover values were greater when based on total (i.e., free + conjugated) DA metabolites than when based on free metabolites. After partial inhibition of monoamine synthesis with the decarboxylase inhibitor DL-alpha- monofluoromethyl -DOPA ( MFMD , 100 mg/kg p.o.) DA and 5-HT turnover values were comparably reduced in whole brain, rest of brain, and CSF but more markedly reduced in the striatum. Mean DA and 5-HT turnover values obtained using CSF were similar with probenecid doses over the range 150-250 mg/kg i.p. but were variable when repeatedly determined in the same rats after administration of 200 mg/kg probenecid. Results in general show that the CSF procedure may be used to determine concurrently both 5-HT and DA turnover (when estimated from the sum of total but not free metabolites) and that it provides a good index of whole brain turnover of these transmitters in the conscious individual rat.  相似文献   

17.
A sensitive, reliable and simplified HPLC assay for simultaneous measurement of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in human cerebrospinal fluid (CSF), platelets and plasma is described. Perchloric acid is used for one step precipitation of proteins and extraction of 5-HT and 5-HIAA. Precision of the assay has been increased by calibration of the instrument using serotonin-free plasma spiked with known amount of standards and N-w-methyl-5-hydroxytryptamine as internal standard. Integration of the peaks and calculations are achieved by a preprogrammed data module using ratio method. As little as 20 pg/ml of serotonin in the deproteinated sample can be detected using this procedure. In a group of surgical patients, plasma 5-HT concentration is (Mean +/- S D) 3.4 +/- 2.7 ng/ml and that of platelet 748.3 +/- 448.3 ng/10(9) platelets. In CSF, 5-HT is found to be 3.3 +/- 3.4 ng/ml and 5-HIAA is 15.1 +/- 7.3 ng/ml. A good correlation (r = 0.648, p less than .0001) is observed between 5-HT and 5-HIAA in CSF.  相似文献   

18.
The effect of the racemic mixture of 3,4-methylenedioxymethamphetamine (MDMA) on the synthesis of dopamine in the terminals of nigrostriatal and mesolimbic neurons was estimated by measuring the accumulation of 3,4-dihydroxyphenylalanine (DOPA) in the striatum and nucleus accumbens 30 min following the administration of the L-aromatic amino acid decarboxylase inhibitor, 3-hydroxybenzylhydrazine. MDMA produced an increase in DOPA accumulation in the striatum which was greater in magnitude and longer in duration than that in the nucleus accumbens. Although the concentrations of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in both the striatum and nucleus accumbens were reduced 3 h following an injection of MDMA (20 mg/kg), 5-HT and 5-HIAA concentrations were significantly reduced only in the striatum 7 days after the administration of MDMA. Pretreatment with a 5-HT2 antagonist, ketanserin, significantly attenuated the reduction in 5-HT concentration in the striatum 3 h following MDMA administration and completely blocked 5-HT depletion at 7 days post administration. Moreover, ketanserin completely blocked MDMA-induced DOPA accumulation in the striatum. The results obtained in these studies suggest that MDMA activates nigrostriatal dopaminergic pathways via 5-HT2 receptors. In addition, these data are supportive of the hypothesis that dopamine plays a role in MDMA-induced 5-HT depletion.  相似文献   

19.
When 5-HT platelet uptake was inhibited in rats by single or repeated oral administration of 4-[2-(3-indolyl)ethyl]piperidine (LM 5008), 5-hydroxy-indole-acetic acid (5-HIAA) and 5-HT platelet concentration decreased. An oral administration of LM 5008 (10 mg/kg) to rats whose platelets were previously labeled with tritiated 5-HT provoked an increase in plasma free 5-HT and 5-HIAA. The maximum rise in 5-HT occured at 15 min while that of 5-HIAA appeared later (30 min). Concurrently urinary excretion of 5-HT was dramatically increased (about 5 times the control value) which indicates that 5-HT metabolism was not stimulated. According to the similarity between blood platelets and tryptaminergic neurons, plasma free 5-HT variations appeat to reflect changes of the neurotransmitter level into the synaptic cleft. Moreover, the excess of plasma free 5-HT induced by LM 5008 could improve 5-HT effects on vascular tone and pain.  相似文献   

20.
Abstract: The administration of tryptophan (Trp)-free amino acid mixtures to depressed patients responding to serotonin [5-hydroxytryptamine (5-HT)] uptake inhibitors (SSRIs) worsens their clinical state. This procedure reduces Trp availability to brain and thus impairs 5-HT synthesis. We have examined the influence of Trp depletion on extracellular 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the rat brain using in vivo microdialysis. The treatment with the SSRI fluvoxamine significantly increased 5-HT content in dialysates from frontal cortex, as compared with control rats (10.2 ± 2.7 vs. 3.1 ± 0.4 fmol per fraction), whereas 5-HIAA was unaffected. Food deprivation for 20 h reduced dialysate 5-HT content to almost control values in fluvoxamine-treated rats (10.2 ± 2.7 vs. 4.3 ± 0.6 fmol per fraction) but did not alter dialysate 5-HIAA content (7.8 ± 0.4 vs. 7.2 ± 0.5 pmol per fraction). The administration of Trp-free amino acid mixtures to fluvoxamine-treated rats significantly attenuated the release of 5-HT in frontal cortex (~50%) and, to a lesser extent, in the midbrain raphe nuclei. This effect was more marked in rats not deprived from food before the experiments (67% reduction of dialysate 5-HT content in frontal cortex) and was absent in control rats (treated with saline). In contrast, dialysate 5-HIAA was markedly affected by Trp depletion in all groups, including controls (65–75% reductions). These data show that the administration of an amino acid mixture with the same composition and dose (in milligrams per kilogram of body weight) as those inducing a severe mood impairment in depressed patients reduces 5-HT and 5-HIAA concentrations in brain dialysates. The reduction of 5-HT release, however, occurs only in animals previously treated with the antidepressant fluvoxamine for 2 weeks, which would be consistent with a marked reduction of 5-HT-mediated transmission in treated depressed patients but not in healthy controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号