首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The bacteriocin AS-48 was not active against intact cells of Salmonella choleraesuis LT2 at neutral pH, but it was very effective on spheroplasts, suggesting that the outer membrane (OM) acts as a protective barrier. Cells sublethally injured by heat or treated with OM-permeabilizing agents (i.e., EDTA and Tris) became sensitive to AS-48. The combination of two or more treatments decreased the amount of AS-48 required for cell killing. The activity of AS-48 against heat-injured cells did not change significantly in the pH range of 4.0 to 8.0. AS-48 showed bactericidal activity against intact cells of Salmonella at pH 4.0. The potency of AS-48 increased greatly when the bacteriocin was dissolved at pH 9.0.  相似文献   

2.
AIMS: To determine the effects of outer membrane (OM) permeabilizing agents on the antimicrobial activity of enterocin AS-48 against Escherichia coli O157:H7 CECT 4783 strain in buffer and apple juice. METHODS AND RESULTS: We determined the influence of pH, EDTA, sodium tripolyphosphate (STPP) and heat on E. coli O157:H7 CECT 4783 sensitivity to enterocin AS-48 in buffer and in apple juice. Enterocin AS-48 was not active against intact cells of E. coli O157:H7 CECT 4783 at neutral pH. However, cells sublethally injured by OM permeabilizing agents (EDTA, STPP, pH 5, pH 8.6 and heat) became sensitive to AS-48, decreasing the amount of bacteriocin required for inhibition of E. coli O157:H7 CECT 4783. CONCLUSIONS: The results presented indicate that enterocin AS-48 could potentially be applied with a considerably wider range of protective agents, such as OM permeabilizing agents, with increased efficacy in inhibiting E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: Results from this study support the potential use of enterocin AS-48 to control E. coli O157:H7 in combination with other hurdles.  相似文献   

3.
Enterococcus faecalis ssp. liquefaciens S-48 (producer of the peptide antibiotic AS-48) and its mutant B-48-28 (AS-48-) secrete the bacteriocin Bc-48. This substance has been purified to homogeneity from culture supernatants of strain B-48-28; it consists of a protein (80 kDa) stable from pH. 5.5 to 9.0 and sensitive to temperatures above 45 degrees C and to proteases. Its inhibitory spectrum is restricted to strains of Enterococcus faecalis. Bc-48 inhibits protein synthesis but does not affect amino acid uptake. A partial reduction of cell viability, together with autolysis, is also observed. Bc-48 differs from peptide AS-48 in both its molecular properties and mode of action.  相似文献   

4.
The cyclic bacteriocin AS-48 has previously been shown to be produced by Enterococcus faecalis strains. A bacteriocin has been purified from an E. faecium strain (E. faecium 7C5), and it has been found to possess molecular mass, cyclization and amino acid sequence typical of bacteriocin AS-48. In addition to the structural gene as-48A, the sequence analysis of the AS-48 gene cluster present in E. faecium 7C5 has revealed the presence of several putative coding regions presumably involved in bacteriocin production and immunity. The results of DNA hybridization assays have indicated that the AS-48 gene cluster and the gene pd78 are present on the same plasmid, possibly the pPD1 plasmid, in E. faecium 7C5.  相似文献   

5.
Bacteriocin AS-48 showed high bactericidal activity for mesophilic and psychrotrophic strains of Bacillus cereus over a broad pH range. AS-48 inhibition of the enterotoxin-producing strain LWL1 was enhanced by sodium nitrite, sodium lactate, and sodium chloride. The latter also enhanced AS-48 activity against strain CECT 131. Bacterial growth and enterotoxin production by strain LWL1 were completely inhibited at bacteriocin concentrations of 7.5 μg/ml. At subinhibitory bacteriocin concentrations, enterotoxin production decreased markedly and sporulation was delayed. Intact spores were resistant to AS-48 but became gradually sensitive to AS-48 during the course of germination.  相似文献   

6.
Bacteriocin AS-48 showed high bactericidal activity for mesophilic and psychrotrophic strains of Bacillus cereus over a broad pH range. AS-48 inhibition of the enterotoxin-producing strain LWL1 was enhanced by sodium nitrite, sodium lactate, and sodium chloride. The latter also enhanced AS-48 activity against strain CECT 131. Bacterial growth and enterotoxin production by strain LWL1 were completely inhibited at bacteriocin concentrations of 7.5 microg/ml. At subinhibitory bacteriocin concentrations, enterotoxin production decreased markedly and sporulation was delayed. Intact spores were resistant to AS-48 but became gradually sensitive to AS-48 during the course of germination.  相似文献   

7.
The bacteriocin AS-48 is a membrane-interacting peptide, which displays a broad anti-microbial spectrum against Gram-positive and Gram-negative bacteria. The NMR structure of AS-48 at pH 3 has been solved. The analysis of this structure suggests that the mechanism of AS-48 anti-bacterial activity involves the accumulation of positively charged molecules at the membrane surface leading to a disruption of the membrane potential. Here, we report the high-resolution crystal structure of AS-48 and sedimentation equilibrium experiments showing that this bacteriocin is able to adopt different oligomeric structures according to the physicochemical environment. The analysis of these structures suggests a mechanism for molecular function of AS-48 involving a transition from a water-soluble form to a membrane-bound state upon membrane binding.  相似文献   

8.
The inhibitory capacity of strain S-48 ofEnterococcus faecalis ssp.liquefaciens was studied. The strain produces a broad-spectrum peptide antibiotic (AS-48) that has been characterized elsewhere. The isolation of mutants from S-48 after mutagenic treatment revealed another inhibitory substance which remained masked in the wild strain. The protein nature and restricted spectrum of this substance points to its being a bacteriocin (Bc-48).  相似文献   

9.
Bacteriocin AS-48 is a 70-residue cyclic polypeptide from Enterococcus faecalis that shows a broad antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. The structure of bacteriocin AS-48 consists of a globular arrangement of five helices with a high positive electrostatic potential in the region comprising helix 4, the turn linking helix 4 and 5, and the N-terminus of helix 5. This region has been considered to participate in its biological activity and in particular in membrane permeation. To understand the mechanism of the antibacterial activity of AS-48 and to discriminate the several mechanisms proposed, a simplified bacteriocin was designed consisting of 21 residues and containing the high positively charged region. A disulfide bridge was introduced at an appropriate position to stabilize the peptide and to conserve the helix-turn-helix arrangement in the parent molecule. According to (1)H and (13)C NMR data, the designed simplified bacteriocin fragment adopts a significant population of a native-like helical hairpin conformation in aqueous solution, which is further stabilized in 30% TFE. The designed peptide does not show any antibacterial activity, though it is shown to compete with the intact native bacteriocin AS-48. These results suggest that the mechanism of membrane disruption by bacteriocin is not as simple as being driven by a deposition of positively charged molecules on the plane of the bacterial membrane. Some other regions of the protein must be present such as, for instance, hydrophobic regions so as to enhance the accumulation of the peptide and favour membrane permeation.  相似文献   

10.
AS-48 is a 70-residue circular peptide from Enterococcus faecalis with a broad antibacterial activity. Here, we produced by limited proteolysis a protein species carrying a single nicking and fragments of 55 and 38 residues. Nicked AS-48 showed a lower helicity by far-ultraviolet circular dichroism and a reduced stability to thermal denaturation, but it was active against the sensitive bacteria assayed. The fragments also partly retained the biological activity of the intact protein. These results indicate that circularization is not required for the bactericidal activity, but it is important to stabilize the native structure. Moreover, it is possible to reduce the sequence to a minimal AS-48 domain without causing inactivation of this bacteriocin.  相似文献   

11.
Production of enterocin AS-48 by Enterococcus faecalis A-48-32 was compared between standard and high-cell density batch fermentations. In high-cell density cultures, bacteriocin production was 2.47-fold higher, provided that the pH was controlled during the fermentation. A two-step procedure for recovery of milligram quantities of purified bacteriocin was developed, based on adsorption of the bacteriocin on Carboxymethyl Sephadex CM-25 followed by reversed-phase chromatography on a semi-preparative column. The purified bacteriocin was active on all the Gram-positive bacteria tested (for example, species of Bacillus, Paenibacillus, Staphylococcus, and Listeria). Strains E. coli U-9, E. coli CECT 102, E. coli CECT 104, E. coli CECT 432, E. coli CECT 543, E. coli CECT 877 and Shigella sonnei CECT 542 were sensitive, while seven other E. coli strains as well as Salmonella choleraesuis CECT 722, S. choleraesuis CECT 916, Enterobacter cloacae CECT 194 and Aeromonas hydrophila CECT 398 were resistant.  相似文献   

12.
The bacteriocinogenic strain RJ16 isolated from goat cheese has been identified as Enterococcusfaecium by species-specific PCR, DNA-rRNA hybridization and rDNA sequencing. Purified bacteriocin from strain RJ16 is a carboxypeptidase A-resistant peptide with a molecular mass (7125 Da) very close to the cyclic peptide enterocin AS-48. Bacteriocin from strain RJ16 and AS-48 show identical antibacterial spectra, although the former is slightly less active on strains of Listeria monocytogenes and Bacillus cereus. Producer strains show cross-immunity. PCR amplification of total DNA from strain RJ16 with primers for the AS-48 structural gene and sequencing of the amplified fragment revealed an almost identical sequence (99.5%), except for a single mutation that predicts the change of Glu residue at position 20 of AS-48 to Val. Therefore, bacteriocin produced by E. faecium RJ16 should be considered a variant of AS-48, which we call AS-48RJ. PCR amplification revealed that strain RJ16 contains the complete as-48. gene cluster. Hybridization with probes for as-48 gene cluster revealed a chromosomal location of as-48 genes in strain RJ16, being the first example of a chromosomal location of this bacteriocin trait. Strain RJ16 produced enzymes of interest in food processing (esterase, esterase lipase and phytase activities), and did not decarboxylate amino acids precursors for biogenic amines. Strain RJ16 did not exhibit haemolytic or gelatinase activities, and PCR amplification revealed the lack of genes encoding for known virulence determinants (aggregation substance, collagen adhesin, enterococcal surface protein, endocarditis antigens, as well as haemolysin and gelatinase production). Strain RJ16 was resistant to ciprofloxacin (MIC > 2 mgl(-1)) and levofloxacin (MIC > 4 mgl(-1)) and showed intermediate resistance to nitrofurantoin and erythromycin, but was sensitive to ampicillin, penicillin, streptomycin, gentamicin, rifampicin, chloramphenicol, tetracycline, quinupristin/dalfopristin, vancomycin and teicoplanin. Altogether, results from this study suggest that this broad-spectrum bacteriocin-producing strain may have a potential use in food preservation.  相似文献   

13.
The presence of bacteriocin structural genes (entA, entB, entP, entQ, entAS-48, entL50A/B, bac31, and cylL) encoding different bacteriocins (enterocin A, enterocin B, enterocin P, enterocin Q, enterocin AS-48, enterocin L50A/B, bacteriocin 31 and cytolysin L, respectively), and the production of bacteriocin activity were analysed in 139 E. faecalis and 41 E. faecium clinical isolates of Tunisia. Forty-eight of 139 E. faecalis isolates (34%) and 7 of 41 of E. faecium isolates (17%) were bacteriocin producers. Sixty-two per cent of the bacteriocin-producing enterococci showed inhibitory activity against L. monocytogenes. Different combinations of entA, entB, entP, and entL50A/B genes were detected among the seven bacteriocin-producer E. faecium isolates, and more that one gene were identified in all the isolates. The entA gene was associated in most of the cases with entB gene in E. faecium isolates. Cyl LS were the unique genes detected among E. faecalis (in 24 of 48 bacteriocin-producer isolates, 50%). A β-hemolytic activity was demonstrated in 19 of the 24 cyl LS -positive E. faecalis isolates (79%), this activity being negative in the remaining five isolates. The presence of different bacteriocin structural genes and the production of antimicrobial activities seems to be a common trait of clinical enterococci.  相似文献   

14.
Bacteriocins are antimicrobial peptides produced by bacteria. Among them, the enterococcal bacteriocin (enterocin) AS-48 stands for its peculiar characteristics and broad-spectrum antimicrobial activity. AS-48 belongs to the class of circular bacteriocins and has been studied in depth in several aspects: peptide structure, genetic determinants, and mode of action. Recently, a wealth of knowledge has accumulated on the antibacterial activity of this bacteriocin against foodborne pathogenic and spoilage bacteria in food systems, especially in vegetable foods and drinks. This work provides a general overview on the results from tests carried out with AS-48 in different vegetable food categories (such as fruit juices, ciders, sport and energy drinks, fresh fruits and vegetables, pre-cooked ready to eat foods, canned vegetables, and bakery products). Depending on the food substrate, the bacteriocin has been tested alone or as part of hurdle technology, in combination with physico-chemical treatments (such as mild heat treatments or high-intensity pulsed electric fields) and other antimicrobial substances (such as essential oils, phenolic compounds, and chemical preservatives). Since the work carried out on bacteriocins in preservation of vegetable foods and drinks is much more limited compared to meat and dairy products, the results reported for AS-48 may open new possibilities in the field of bacteriocin applications.  相似文献   

15.
The peptide AS-48 is highly active on all Listeria species. It has a bactericidal and bacteriolytic mode of action on Listeria monocytogenes CECT 4032, causing depletion of the membrane electrical potential and pH gradient. The producer strain Enterococcus faecalis A-48-32, releases sufficient amounts of AS-48 into the growth medium to suppress L. monocytogenes in cocultures at enterococcus-to-listeria ratios above 1 at 37°C or above 10 at 15°C. As the temperature decreases, the bactericidal effects of AS-48 are less pronounced, but at 2.5 μg/ml it still can inhibit the growth of listeria at 6°C. AS-48 is highly active on liquid cultures, although concentrations above 0.2 μg/ml are required to avoid adaptation of listeria. AS-48-adapted cells can be selected at low (but still inhibitory) concentrations, and they can be inhibited completely by AS-48 at 0.5 μg/ml. The adaptation is lost gradually upon repeated subcultivation. AS48ad cells are cross-resistant to nisin and show an increased resistance to muramidases. Their fatty acid composition is modified: they show a much higher proportion of branched fatty acids as well as a higher C15:0 An-to-C17:0 An ratio. Resistance to AS-48 is also maintained by protoplasts from AS48ad cells. Electron microscopy observations show that the cell wall of AS48ad cells is thicker and less dense. The structure of wild-type cells is severely modified after AS-48 treatment: the cell wall and the cytoplasmic membrane are disorganized, and the cytoplasmic content is lost. Intracytoplasmic membrane vesicles are also observed when the wild-type strain is treated with high AS-48 concentrations.  相似文献   

16.
Enterococcus faecalis S-48 produces a peptide antibiotic, AS-48, and a bacteriocin, Bc-48. We have isolated mutants that lack these inhibitory characteristics. Further analysis of the mutants indicates that a plasmid of 56 kilobases (pMB2) may harbor the genes for AS-48. In conjugation experiments, pMB2 has been transferred into a plasmid-free OG1X strain of E. faecalis. The OG1X(pMB2) transconjugant produces the antibiotic AS-48 in solid medium, and the MIC of AS-48 for this strain is the same as that of the donor strain.  相似文献   

17.
The effect of high-pressure (HP) treatments combined with bacteriocins of lactic acid bacteria (LAB) produced in situ on the survival of Escherichia coli O157:H7 in cheese was investigated. Cheeses were manufactured from raw milk inoculated with E. coli O157:H7 at approximately 105 CFU/ml. Seven different bacteriocin-producing LAB were added at approximately 106 CFU/ml as adjuncts to the starter. Cheeses were pressurized on day 2 or 50 at 300 MPa for 10 min or 500 MPa for 5 min, at 10°C in both cases. After 60 days, E. coli O157:H7 counts in cheeses manufactured without bacteriocin-producing LAB and not pressurized were 5.1 log CFU/g. A higher inactivation of E. coli O157:H7 was achieved in cheeses without bacteriocin-producing LAB when 300 MPa was applied on day 50 (3.8-log-unit reduction) than if applied on day 2 (1.3-log-unit reduction). Application of 500 MPa eliminated E. coli O157:H7 in 60-day-old cheeses. Cheeses made with bacteriocin-producing LAB and not pressurized showed a slight reduction of the pathogen. Pressurization at 300 MPa on day 2 and addition of lacticin 481-, nisin A-, bacteriocin TAB 57-, or enterocin AS-48-producing LAB were synergistic and reduced E. coli O157:H7 counts to levels below 2 log units in 60-day-old cheeses. Pressurization at 300 MPa on day 50 and addition of nisin A-, bacteriocin TAB 57-, enterocin I-, or enterocin AS-48-producing LAB completely inactivated E. coli O157:H7 in 60-day-old cheeses. The application of reduced pressures combined with bacteriocin-producing LAB is a feasible procedure to improve cheese safety.  相似文献   

18.
(Guanosine 5′-phosphor)-2-methylimidazolide (2-MeImpG), unlike guanosine 5′-phosphorimidazolide (ImpG), undergoes an efficient, buffer-independent, template-directed oligomerization in the presence of poly(C) at pH values above 7.6. The reaction occurs in a Watson-Crick double helix and yields predominantly 3′-5′-linked oligomers up to the 50-mer in above 80% yield. Synthesis proceeds in the 5′ → 3′ direction and has high fidelity in the sense that nucleotides other than G are not incorporated significantly into oligomers. Under some conditions, oligomers corresponding to approximately one and two turns of the helix are obtained in higher yield than somewhat longer or somewhat shorter oligomers.In the protonated triple-helical structure formed below pH 7, the efficiency of the oligomerization is much lower. Oligomers up to about the 10-mer are obtained. The most abundant products are “capped” at the 5′ terminus with a GppG pyrophosphate group.  相似文献   

19.
《Biophysical journal》2023,122(1):168-179
The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR’s function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E. coli membranes and synthetic liposomes. Compared with the monomers, the photocycle kinetics of PR oligomers is ~2 and ~4.5 times slower for transitions between the K and M and the M and N photointermediates, respectively, indicating that oligomerization significantly slows PR’s rate of proton transport in liposomes. In contrast, the apparent pKa of the key proton acceptor residue D97 (pKaD97) of liposome-embedded PR persists at 6.2–6.6, regardless of cross-protomer modulation of D97, suggesting that the liposome environment helps maintain PR’s functional activity at neutral pH. By comparison, when extracted directly from E. coli membranes into styrene-maleic acid lipid particles, the pKaD97 of monomer-enriched E50Q PR drastically increases to 8.9, implying that there is a very low active PR population at neutral pH to engage in PR’s photocycle. These findings demonstrate that oligomerization impacts PR’s photocycle kinetics, while lipid-based membrane mimetics strongly affect PR’s active population via different mechanisms.  相似文献   

20.
Using small‐angle X‐ray scattering (SAXS), light scattering (LS), and soft laser ablation we have shown that lactoferrin (LF) in solution at neutral pH is oligomerized in the absence of salt or at physiological salt concentrations. The level of oligomerization depends on the concentration of LF, KCl or NaCl, and on the duration of the protein storage in solution. At the concentrations comparable with those in human milk (1 ÷ 6 mg/ml), the average radius of gyration (Rg) values of LF can attain 400 ÷ 480 Å´, while fresh solution of previously lyophylized LF demonstrate a lower average Rg (50 ÷ 100 Å´), and Rg value characterizing the LF monomer formed at 1 M NaCl is 26.7 Å´. The addition of oligonucleotides, oligosaccharides, or mononucleotides to LF in the presence or in the absence of KCl with different level of initial oligomerization accelerates the oligomerization rate and increases the Rg values up to ~600 ÷ 700 Å´, which correspond to associates containing ten or more protein molecules. During gel filtration on Sepharose 4B, high‐degree LF oligomers dissociate nearly completely forming different degraded complexes, but in some cases it is possible to reveal small amount of a decamer. A possible role for oligomerization of LF, a highly polyfunctional protein, for its different biological activities is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号