首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Omeprazole is a proton pump inhibitor drug in widespread use for the reduction of gastric acid production. It is also proposed as a test substance for the phenotyping of cytochrome CYP3A4 and CYP2C19 enzyme activities. For this purpose, it is necessary to quantify, additionally to omeprazole, the two main metabolites 5-hydroxyomeprazole and omeprazole-sulfon in human plasma. Since omeprazole is a racemic mixture of two enantiomers and its enzymatic decomposition depends in part on its chiral configuration, full information about its metabolic breakdown can only be gained by enantioselective quantification of the drug and its metabolites. We introduce a new LC-MS/MS method that is capable to simultaneously quantify omeprazole and its two main metabolites enantioselectively in human serum. The method features solid-phase extraction, normal phase chiral HPLC separation and atmospheric pressure photoionization tandem mass spectrometry. As internal standards serve stable isotope labeled omeprazole and 5-hydroxyomeprazole. The calibration functions are linear in the range of 5-750 ng/ml for the omeprazole enantiomers and omeprazole-sulfon, and 2.5-375 ng/ml for the 5-hydroxyomeprazole enantiomers, respectively. Intra- and inter-day relative standard deviations are <7% for omeprazole and 5-hydroxyomeprazole enantiomers, and <9% for omeprazole-sulfon, respectively.  相似文献   

2.
Studies investigating the relationship between CYP2C19 genotype and the stereoselective metabolism of omeprazole have not been reported. In the present study, we developed a simple and sensitive analytical method based on column switching reversed phase high-performance liquid chromatography (HPLC) with UV detection to determine the concentrations of (R)- and (S)-omeprazole and of its principal metabolites, (R)- and (S)-5-hydroxyomeprazole, and the non-chiral, omeprazole sulfone, in human plasma. Sample preparation involved liquid-liquid extraction with diethyl ether:dichloromethane (60:40, v/v) followed by clean-up on a TSK BSA-ODS/S column (5 μm, 10 mm × 4.6mm i.d.) using phosphate buffer:acetonitrile (97:3, v/v, pH 6.4). After column switching, separation was performed on a Shiseido CD-ph chiral column (5 μm, 150 mm × 4.6mm i.d.) using phosphate buffer:methanol (45:55, v/v, pH 5.0) as mobile phase. The limit of quantitation (LOQ) was 5 ng/mL for all analytes with intra- and inter-day precisions (as coefficient of variation) of <9.5% and <9.6%, respectively for all analytes. The present method was successfully applied to a chiral pharmacokinetic study of omeprazole in human volunteers with different CYP2C19 genotypes. The results show that the formation of (R)-5-hydroxyomeprazole gives the best correlation with CYP2C19 genotype.  相似文献   

3.
A simple and sensitive column-switching high-performance liquid chromatographic method was developed for the simultaneous determination of omeprazole and its two main metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in human plasma. Omeprazole, its two metabolites and lansoprazol as an internal standard were extracted from 1 ml of alkalinized plasma sample using diethyl ether-dichloromethane (45:55, v/v). The extract was injected into a column I (TSK-PW precolumn, 10 microm, 35 mm x 4.6 mm i.d.) for clean-up and column II (Inertsil ODS-80A column, 5 microm, 150 mm x 4.6mm i.d.) for separation. The mobile phase consisted of phosphate buffer-acetonitrile (92:8 v/v, pH 7.0) for clean-up and phosphate buffer-acetonitrile-methanol (65:30:5 v/v/v, pH 6.5) for separation, respectively. The peak was detected with an ultraviolet detector set at a wavelength of 302 nm, and total time for chromatographic separation was approximately 25 min. The validated concentration ranges of this method were 3-2000 ng/ml for omeprazole, 3-50 ng/ml for 5-hydroxyomeprazole and 3-1000 ng/ml for omeprazole sulfone. Mean recoveries were 84.3% for omeprazole, 64.3% for 5-hydroxyomeprazole and 86.1% for omeprazole sulfone. Intra- and inter-day coefficient variations were less than 5.1 and 6.6% for omeprazole, 4.6 and 5.0% for 5-hydroxyomeprazole and 4.6 and 4.9% for omeprazole sulfone at the different concentrations. The limits of quantification were 3 ng/ml for omeprazole and its metabolites. This method was suitable for use in pharmacokinetic studies in human volunteers, and provides a useful tool for measuring CYP2C19 activity.  相似文献   

4.
A sensitive method was developed for the simultaneous determination of omeprazole and its major metabolites 5-hydroxyomeprazole and omeprazole sulfone in human plasma by HPLC-electrospray mass spectrometry. Following liquid-liquid extraction HPLC separation was achieved on a ProntoSil AQ, C18 column using a gradient with 10 mM ammonium acetate in water (pH 7.25) and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH(+) ions, m/z 346 for omeprazole, m/z 362 for 5-hydroxy-omeprazole and omeprazol-sulfone and m/z 300 for the internal standard (2-{[(3,5-dimethylpyridine-2-yl)methyl]thio}-1H-benzimidazole-5-yl)methanol. The limit of quantification (LOQ) achieved with this method was 5 ng/ml for 5-hydroxyomeprazole and 10 ng/ml for omeprazole and omeprazole-sulfone using 0.25 ml of plasma. Intra- and inter-assay variability was below 11% over the whole concentration range from 5 to 250 ng/ml for 5-hydroxyomeprazol and from 10 to 750 ng/ml for omeprazole and omeprazole-sulfone. The method was successfully applied to the determination of pharmacokinetic parameters of esomeprazole and the two major metabolites after a single dose and under steady state conditions.  相似文献   

5.
Open-tubular capillary electrochromatography (OT-CEC) was used to study the interactions of synthetic (metallo)porphyrin derivatives (immobilized by physical adsorption to the fused-silica capillary wall) with three aromatic amino acids (phenylalanine, tyrosine, tryptophan), three aliphatic amino acids (beta-alanine, proline, valine) and two oligopeptides (diglycine, triglycine). The effective mobilities of amino acids and peptides measured in OT-CEC mode in the acid and alkaline background electrolytes (BGEs) were compared with those obtained by capillary zone electrophoresis (CZE) in the bare fused-silica capillary in the same BGEs. In this way the influence of the peripheral substituents and the character of the central metal atom in porphyrin derivatives on the interactions with amino acids and peptides in the acid and alkaline media was investigated. Three types of noncovalent interactions, axial ligation to the central metal atom, pi-pi stacking and electrostatic repulsion seem to take part in the interactions of analyzed amino acids and peptides with porphyrin derivatives, resulting in a better separation of these analytes by OT-CEC than by CZE.  相似文献   

6.
Phospholipid-protein coatings for chiral capillary electrochromatography   总被引:2,自引:0,他引:2  
A phospholipid-bovine serum albumin (BSA) coating was developed for chiral capillary electrochromatographic separation of d- and l-tryptophan. Temperature, liposome composition, and liposome-BSA mixing and extrusion were found to have critical effects on the chiral separation of d- and l-tryptophan in terms of resolution, separation efficiency, and migration times. A solution of 0.5mM phosphatidylcholine (PC)-1 mg/ml BSA performed better than a solution of 0.5mM PC/phosphatidylserine (PS) (80:20, mol%)-1 mg/ml BSA as capillary coating; baseline separation of the enantiomers with satisfactory resolution was then achieved. Temperature played a crucial role in the chiral separation, as demonstrated for phospholipid-coated capillaries immobilized with BSA and lysozyme. The d- and l-tryptophans showed a marked difference in separation efficiency on the PC-BSA-coated capillary; the theoretical plate number of l-tryptophan was above 500,000 m(-1), whereas that of d-tryptophan was only about 22,000 m(-1). Immobilized BSA (pI 4.7) showed better chiral separation selectivity for the enantiomers than did immobilized lysozyme (pI 10.5), alpha-chymotrypsin (pI 8.1-8.3), or avidin (pI 10.0-10.5); also resolution was better and analysis time was faster. Hydrophobic interactions played an important role in the BSA-immobilized phospholipid-coated capillaries. The importance of protein net charge and molar mass for its immobilization in phospholipid-coated capillaries is discussed.  相似文献   

7.

Objectives

To find a simple enzymatic strategy for the efficient synthesis of the expensive 5′-hydroxyomeprazole sulfide, a recently identified minor human metabolite, from omeprazole sulfide, which is an inexpensive substrate.

Results

The practical synthetic strategy for the 5′-OH omeprazole sulfide was accomplished with a set of highly active CYP102A1 mutants, which were obtained by blue colony screening from CYP102A1 libraries with a high conversion yield. The mutant and even the wild-type enzyme of CYP102A1 catalyzed the high regioselective (98 %) C-H hydroxylation of omeprazole sulfide to 5′-OH omeprazole sulfide with a high conversion yield (85–90 %).

Conclusions

A highly efficient synthesis of 5′-OH omeprazole sulfide was developed using CYP102A1 from Bacillus megaterium as a biocatalyst.
  相似文献   

8.
The chiral separation of (±)‐catechin was investigated by capillary electrophoresis using characterized succinyl‐β‐cyclodextrins (Suc‐β‐CDs) with one to three degree of substitution values. The effects of nature and concentration of Suc‐β‐CDs and running buffer pH on the migration time and resolution of (±)‐catechin are discussed. All three kinds of Suc‐β‐CDs show a clear baseline separation of (±)‐catechin in capillary electrophoresis. Mono‐Suc‐β‐CD effectively separated (±)‐catechin, and additional substituted CDs (di‐ and tri‐Suc‐β‐CD) were capable of chiral separation at a broad pH range. The optimum running conditions were found to be 100 mM borate buffer (pH 9.8) containing 5 mM mono‐Suc‐β‐CD with no methanol organic modifier. Chirality, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
In the past several years, capillary electrophoresis (CE) has generated considerable interest from pharmaceutical companies for control of both the chiral and achiral purity of bulk drugs and drug products. This paper evaluates the use of CE as: (1) a technique complementary to HPLC for the determination of peak homogeneity of a drug, (2) for determination of chiral purity, and (3) for determination of achiral purity. It would be greatly advantageous if CE could be used to determine both the chiral and achiral purity in a single assay. This investigation compares the results obtained for the separation of the enantiomers of duloxetine using several neutral cyclodextrins to those obtained using anionic cyclodextrins (sulfobutyl ether derivatives) as chiral selectors added to the separation buffer. In addition, it reports chiral separations obtained by using neutral cyclodextrins in a sulfonic acid-coated capillary column, which give a negatively charged capillary surface and electro-osmotic flow even in low pH buffers. The possible mechanism of separation is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

10.
A practical and selective HPLC method for the separation and quantification of omeprazole enantiomers in human plasma is presented. C18 solid phase extraction (SPE) cartridges were used to extract the enantiomers from plasma samples and the chiral separation was carried out on a Chiralpak AD column protected with a CN guard column, using ethanol:hexane (70:30) as the mobile phase, at a flow rate of 0.5 ml/min. The detection was carried out at 302 nm. The method proved to be linear in the range of 10-1000 ng/ml for each enantiomer, with a quantification limit of 5 ng/ml. Precision and accuracy, demonstrated by within-day and between-day assays, were lower than 10%.  相似文献   

11.
The enantiomers of 7-des-methyl-ormeloxifene were separated by countercurrent chromatography (CCC) using sulfated beta-cyclodextrin as chiral selector, representing the first reported successful application of a cyclodextrin derivative in CCC-based resolutions. The choice of chiral selector relies on extreme separation factors observed in chiral capillary electrophoresis, and suitable CCC conditions were developed employing an analytical toroidal coil countercurrent chromatograph. Preparative separation of the enantiomers was performed using a conventional, preparative CCC-instrument. Copyright 1999 Wiley-Liss, Inc.  相似文献   

12.
Cellulose tris(3-chloro-4-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSPs) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the chiral selector loading onto silica, mobile phase composition and pH, as well as separation variables on separation of enantiomers was studied. It was found that CSPs based on cellulose tris(3-chloro-4-methylphenylcarbamate) can be used for preparation of very stable capillary columns useful for enantioseparations in nano-LC and CEC in combination with polar organic mobile phases.  相似文献   

13.
The separation methods of the enantiomers of two β‐blockers and tryptophan were studied using capillary electrochromatography with heparin covalently as well as non‐covalently, bonded onto the capillary inner wall as stationary phase and electrokinetic chromatography with heparin as pseudostationary phase. In the case of heparin, used as a stationary phase, the method was unable to resolve enantiomers in both cases β‐blockers and tryptophan. On the other hand, when heparin was used as a pseudostationary phase, the resolution of the enantiomers was obtained only with 3‐aminopropyltriethoxysilane which were immobilised onto the inner phase of the capillary. The results of this study let us infer that the electrostatic, hydrophobic, and steric interactions were involved in the separation mechanisms. The separation was achieved in less than 10 minutes under the optimized conditions: 30 mM phosphate buffer (pH 2.5) with the adding of 15 mg/mL of heparin at 15°C and 10 kV. The usefulness of heparin as a chiral selector both in electrokinetic chromatography using 3‐aminopropyltriethoxysilane attached to the capillary was demonstrated for the first time. The developed method was powerful, sensitive, and fast, and it could be considered an important alternative to conventional methods used for chiral separation.  相似文献   

14.
The effectiveness of using a mixture of the chiral selectors vancomycin and ristocetin A to achieve chiral recognition was examined in this study. The results of using the mixed chiral selector vancomycin and ristocetin A in capillary electrophoresis were compared with the results of using each chiral selector alone. Chiral separations were carried out using a coated capillary column to suppress electroosmotic flow and minimize interactions with the capillary wall. We employed a countercurrent process where the solute reaches the detection cell window after the chiral selector has cleared the window, minimizing the background absorbance from the chiral selector and improving sensitivity. Using a mixture of vancomycin and ristocetin A, separations were achieved which often exceeded the resolving power of either chiral selector when used alone. The effect of voltage on resolution was also studied, and the optimal voltage was found to be between -5 and -8 kV.  相似文献   

15.
Beck GM  Neau SH  Holder AJ  Hemenway JN 《Chirality》2000,12(9):688-696
Lambda-carrageenan, a linear, high molecular weight sulfated polysaccharide, was successfully employed in both its native and sulfobutyl derivatized form as a chiral selector in capillary electrophoresis for the separation of enantiomers of basic pharmaceutical compounds. In order to characterize the chiral selectivity properties of this chiral selector, various structurally related racemic compounds were analyzed for enantiomeric interactions using capillary electrophoresis. The results of these studies were then rationalized and analyzed utilizing a general quantitative structure-property relationship (QSPR) evaluation in order to predict critical analyte structural requirements for successful enantiomeric separation. Important structural components of the analytes were found to include the aromatic content, the type of substitution on the aromatic ring, presence of a primary or secondary protonated amine, and an overall positive charge to the molecule.  相似文献   

16.
This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6‐tri‐O‐methyl)‐β‐cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5‐s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively. Chirality 27:223–227, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
In this paper, a new capillary electrophoresis (CE) separation and detection method was developed for the chiral separation of the four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) using hydroxypropyl-β-cyclodextrin (HP-β-CD) and chiral ionic liquid ([TBA][L-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, HP-β-CD and chiral ionic liquid concentrations, capillary temperature, and separation voltage were investigated. After optimization of separation conditions, baseline separation of the three analytes (cinchonidine, quinine, cinchonine) was achieved in fewer than 7 min in ammonium acetate background electrolyte (pH 5.0) with the addition of HP-β-CD in a concentration of 40 mM and [TBA][L-ASP] of 14 mM, while the baseline separation of cinchonine and quinidine was not obtained. Therefore, the first-order derivative electropherogram was applied for resolving overlapping peaks. Regression equations revealed a good linear relationship between peak areas in first-order derivative electropherograms and concentrations of the two diastereomer pairs. The results not only indicated that the first-order derivative electropherogram was effective in determination of a low content component and of those not fully separated from adjacent ones, but also showed that the ionic liquid appeared to be a very promising chiral selector in CE.  相似文献   

18.
Prediction of chiral separation for a compound using a chiral selector is an interesting and debatable work. For this purpose, in this study 23 chiral basic drugs with different chemical structures were selected as model solutes and the influence of their chemical structures on the enantioseparation in the presence of maltodextrin (MD) as chiral selector was investigated. For chiral separation, a 100‐mM phosphate buffer solution (pH 3.0) containing 10% (w/v) MD with dextrose equivalent (DE) of 4‐7 as chiral selector at the temperature of 25°C and voltage of 20 kV was used. Under this condition, baseline separation was achieved for nine chiral compounds and partial separation was obtained for another six chiral compounds while no enantioseparation was obtained for the remaining eight compounds. The results showed that the existence of at least two aromatic rings or cycloalkanes and an oxygen or nitrogen atom or –CN group directly bonded to the chiral center are necessary for baseline separation. With the obtained results in this study, chiral separation of a chiral compound can be estimated with MD‐modified capillary electrophoresis before analysis. This prediction will minimize the number of preliminary experiments required to resolve enantiomers and will save time and cost. Chirality 26:620–628, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
This review summarizes the application of capillary electrophoresis and capillary electrochromatography for the chiral separation of various substance classes using the principle of ligand exchange. The application of this principle to various substance classes is reported.  相似文献   

20.
Transfersomes were a special kind of nanomaterials with higher deformability and flexibility. A rapid method for coated-column preparation using anionic transfersomes as a coating material by electrostatic adsorption was developed. With carboxymethyl-β-cyclodextrin added in running buffer as the chiral selector, the capillary electrochromatography enantioseparation system based on the transfersomes-coated column modified by electrostatic adsorption was established for the first time. Propranolol and metoprolol acted as model drugs to evaluate the enantioseparation performance, these two basic drugs achieved baseline separation with satisfactory resolution and selection factor in this transfersomes-electrochromatography system but only partial separation in bare column system. In order to get the optimal separation condition, concentration of chiral selector, buffer pH, and applied voltage were systematically investigated. A rapid and efficient enantioseparation electrochromatography system was established and showed that transfersomes as the stationary phase could efficiently improve chiral separation effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号