首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
MOTIVATION: False discovery rate (FDR) is defined as the expected percentage of false positives among all the claimed positives. In practice, with the true FDR unknown, an estimated FDR can serve as a criterion to evaluate the performance of various statistical methods under the condition that the estimated FDR approximates the true FDR well, or at least, it does not improperly favor or disfavor any particular method. Permutation methods have become popular to estimate FDR in genomic studies. The purpose of this paper is 2-fold. First, we investigate theoretically and empirically whether the standard permutation-based FDR estimator is biased, and if so, whether the bias inappropriately favors or disfavors any method. Second, we propose a simple modification of the standard permutation to yield a better FDR estimator, which can in turn serve as a more fair criterion to evaluate various statistical methods. RESULTS: Both simulated and real data examples are used for illustration and comparison. Three commonly used test statistics, the sample mean, SAM statistic and Student's t-statistic, are considered. The results show that the standard permutation method overestimates FDR. The overestimation is the most severe for the sample mean statistic while the least for the t-statistic with the SAM-statistic lying between the two extremes, suggesting that one has to be cautious when using the standard permutation-based FDR estimates to evaluate various statistical methods. In addition, our proposed FDR estimation method is simple and outperforms the standard method.  相似文献   

2.
Recently, Efron (2007) provided methods for assessing the effect of correlation on false discovery rate (FDR) in large‐scale testing problems in the context of microarray data. Although FDR procedure does not require independence of the tests, existence of correlation grossly under‐ or overestimates the number of critical genes. Here, we briefly review Efron's method and apply it to a relatively smaller spectrometry proteomics data. We show that even here the correlation can affect the FDR values and the number of proteins declared as critical.  相似文献   

3.
False discovery rate, sensitivity and sample size for microarray studies   总被引:10,自引:0,他引:10  
MOTIVATION: In microarray data studies most researchers are keenly aware of the potentially high rate of false positives and the need to control it. One key statistical shift is the move away from the well-known P-value to false discovery rate (FDR). Less discussion perhaps has been spent on the sensitivity or the associated false negative rate (FNR). The purpose of this paper is to explain in simple ways why the shift from P-value to FDR for statistical assessment of microarray data is necessary, to elucidate the determining factors of FDR and, for a two-sample comparative study, to discuss its control via sample size at the design stage. RESULTS: We use a mixture model, involving differentially expressed (DE) and non-DE genes, that captures the most common problem of finding DE genes. Factors determining FDR are (1) the proportion of truly differentially expressed genes, (2) the distribution of the true differences, (3) measurement variability and (4) sample size. Many current small microarray studies are plagued with large FDR, but controlling FDR alone can lead to unacceptably large FNR. In evaluating a design of a microarray study, sensitivity or FNR curves should be computed routinely together with FDR curves. Under certain assumptions, the FDR and FNR curves coincide, thus simplifying the choice of sample size for controlling the FDR and FNR jointly.  相似文献   

4.

Background

When conducting multiple hypothesis tests, it is important to control the number of false positives, or the False Discovery Rate (FDR). However, there is a tradeoff between controlling FDR and maximizing power. Several methods have been proposed, such as the q-value method, to estimate the proportion of true null hypothesis among the tested hypotheses, and use this estimation in the control of FDR. These methods usually depend on the assumption that the test statistics are independent (or only weakly correlated). However, many types of data, for example microarray data, often contain large scale correlation structures. Our objective was to develop methods to control the FDR while maintaining a greater level of power in highly correlated datasets by improving the estimation of the proportion of null hypotheses.

Results

We showed that when strong correlation exists among the data, which is common in microarray datasets, the estimation of the proportion of null hypotheses could be highly variable resulting in a high level of variation in the FDR. Therefore, we developed a re-sampling strategy to reduce the variation by breaking the correlations between gene expression values, then using a conservative strategy of selecting the upper quartile of the re-sampling estimations to obtain a strong control of FDR.

Conclusion

With simulation studies and perturbations on actual microarray datasets, our method, compared to competing methods such as q-value, generated slightly biased estimates on the proportion of null hypotheses but with lower mean square errors. When selecting genes with controlling the same FDR level, our methods have on average a significantly lower false discovery rate in exchange for a minor reduction in the power.  相似文献   

5.
We develop an approach for microarray differential expression analysis, i.e. identifying genes whose expression levels differ between two or more groups. Current approaches to inference rely either on full parametric assumptions or on permutation-based techniques for sampling under the null distribution. In some situations, however, a full parametric model cannot be justified, or the sample size per group is too small for permutation methods to be valid. We propose a semi-parametric framework based on partial mixture estimation which only requires a parametric assumption for the null (equally expressed) distribution and can handle small sample sizes where permutation methods break down. We develop two novel improvements of Scott's minimum integrated square error criterion for partial mixture estimation [Scott, 2004a,b]. As a side benefit, we obtain interpretable and closed-form estimates for the proportion of EE genes. Pseudo-Bayesian and frequentist procedures for controlling the false discovery rate are given. Results from simulations and real datasets indicate that our approach can provide substantial advantages for small sample sizes over the SAM method of Tusher et al. [2001], the empirical Bayes procedure of Efron and Tibshirani [2002], the mixture of normals of Pan et al. [2003] and a t-test with p-value adjustment [Dudoit et al., 2003] to control the FDR [Benjamini and Hochberg, 1995].  相似文献   

6.
Bias in the estimation of false discovery rate in microarray studies   总被引:4,自引:0,他引:4  
MOTIVATION: The false discovery rate (FDR) provides a key statistical assessment for microarray studies. Its value depends on the proportion pi(0) of non-differentially expressed (non-DE) genes. In most microarray studies, many genes have small effects not easily separable from non-DE genes. As a result, current methods often overestimate pi(0) and FDR, leading to unnecessary loss of power in the overall analysis. METHODS: For the common two-sample comparison we derive a natural mixture model of the test statistic and an explicit bias formula in the standard estimation of pi(0). We suggest an improved estimation of pi(0) based on the mixture model and describe a practical likelihood-based procedure for this purpose. RESULTS: The analysis shows that a large bias occurs when pi(0) is far from 1 and when the non-centrality parameters of the distribution of the test statistic are near zero. The theoretical result also explains substantial discrepancies between non-parametric and model-based estimates of pi(0). Simulation studies indicate mixture-model estimates are less biased than standard estimates. The method is applied to breast cancer and lymphoma data examples. AVAILABILITY: An R-package OCplus containing functions to compute pi(0) based on the mixture model, the resulting FDR and other operating characteristics of microarray data, is freely available at http://www.meb.ki.se/~yudpaw CONTACT: yudi.pawitan@meb.ki.se and alexander.ploner@meb.ki.se.  相似文献   

7.

Background  

The evaluation of statistical significance has become a critical process in identifying differentially expressed genes in microarray studies. Classical p-value adjustment methods for multiple comparisons such as family-wise error rate (FWER) have been found to be too conservative in analyzing large-screening microarray data, and the False Discovery Rate (FDR), the expected proportion of false positives among all positives, has been recently suggested as an alternative for controlling false positives. Several statistical approaches have been used to estimate and control FDR, but these may not provide reliable FDR estimation when applied to microarray data sets with a small number of replicates.  相似文献   

8.
A Bayesian model-based clustering approach is proposed for identifying differentially expressed genes in meta-analysis. A Bayesian hierarchical model is used as a scientific tool for combining information from different studies, and a mixture prior is used to separate differentially expressed genes from non-differentially expressed genes. Posterior estimation of the parameters and missing observations are done by using a simple Markov chain Monte Carlo method. From the estimated mixture model, useful measure of significance of a test such as the Bayesian false discovery rate (FDR), the local FDR (Efron et al., 2001), and the integration-driven discovery rate (IDR; Choi et al., 2003) can be easily computed. The model-based approach is also compared with commonly used permutation methods, and it is shown that the model-based approach is superior to the permutation methods when there are excessive under-expressed genes compared to over-expressed genes or vice versa. The proposed method is applied to four publicly available prostate cancer gene expression data sets and simulated data sets.  相似文献   

9.
MOTIVATION: Statistical methods based on controlling the false discovery rate (FDR) or positive false discovery rate (pFDR) are now well established in identifying differentially expressed genes in DNA microarray. Several authors have recently raised the important issue that FDR or pFDR may give misleading inference when specific genes are of interest because they average the genes under consideration with genes that show stronger evidence for differential expression. The paper proposes a flexible and robust mixture model for estimating the local FDR which quantifies how plausible each specific gene expresses differentially. RESULTS: We develop a special mixture model tailored to multiple testing by requiring the P-value distribution for the differentially expressed genes to be stochastically smaller than the P-value distribution for the non-differentially expressed genes. A smoothing mechanism is built in. The proposed model gives robust estimation of local FDR for any reasonable underlying P-value distributions. It also provides a single framework for estimating the proportion of differentially expressed genes, pFDR, negative predictive values, sensitivity and specificity. A cervical cancer study shows that the local FDR gives more specific and relevant quantification of the evidence for differential expression that can be substantially different from pFDR. AVAILABILITY: An R function implementing the proposed model is available at http://www.geocities.com/jg_liao/software  相似文献   

10.
Everett et al. recently reported on a statistical bias that arises in the target-decoy approach to false discovery rate estimation in two-pass proteomics search strategies as exemplified by X!Tandem. This bias can cause serious underestimation of the false discovery rate. We argue here that the "unbiased" solution proposed by Everett et al., however, is also biased and under certain circumstances can also result in a serious underestimate of the FDR, especially at the protein level.  相似文献   

11.
This commentary is concerned with a formula for the false discovery rate (FDR) which frequently serves as a basis for its estimation. This formula is valid under some quite special conditions, motivating us to further discuss probabilistic models behind the commonly accepted FDR concept with a special focus on problems arising in microarray data analysis. We also present a simulation study designed to assess the effects of inter-gene correlations on some theoretical results based on such models.  相似文献   

12.
Estimation of false discovery proportion under general dependence   总被引:1,自引:0,他引:1  
MOTIVATION: Wide-scale correlations between genes are commonly observed in gene expression data, due to both biological and technical reasons. These correlations increase the variability of the standard estimate of the false discovery rate (FDR). We highlight the false discovery proportion (FDP, instead of the FDR) as the suitable quantity for assessing differential expression in microarray data, demonstrate the deleterious effects of correlation on FDP estimation and propose an improved estimation method that accounts for the correlations. METHODS: We analyse the variation pattern of the distribution of test statistics under permutation using the singular value decomposition. The results suggest a latent FDR model that accounts for the effects of correlation, and is statistically closer to the FDP. We develop a procedure for estimating the latent FDR (ELF) based on a Poisson regression model. RESULTS: For simulated data based on the correlation structure of real datasets, we find that ELF performs substantially better than the standard FDR approach in estimating the FDP. We illustrate the use of ELF in the analysis of breast cancer and lymphoma data. AVAILABILITY: R code to perform ELF is available in http://www.meb.ki.se/~yudpaw.  相似文献   

13.
当两组样本间基因表达的差异程度较低或样本量较少时,采用通常的错误发现率(falsediscovery rate,FDR)控制水平(如5%或10%),可能无法识别足够多的差异表达基因以进行后续的功能富集分析。然而,功能富集分析对差异表达基因中的错误发现具有一定的稳健性。所以,采用较低的FDR控制水平(即允许较高的FDR)识别差异表达基因,可能可以可靠地发现疾病相关功能。本文分析了5套研究乳腺癌转移的基因表达谱,通过其中差异表达信号较强的3套数据,论证了即使差异表达基因的FDR达到25%,功能富集分析的结果仍具有较高的稳健性。然后,在另外2套差异表达信号微弱的数据中,采用25%的FDR控制水平筛选差异表达基因来进行功能富集分析,并与前述3套数据的功能富集结果做比较。结果显示,采用较低的FDR控制水平筛选差异表达基因,仍然可以可靠地识别乳腺癌转移相关功能。分析结果也提示,在乳腺癌转移过程中,一些功能较为宽泛的生物学过程(如细胞分裂、细胞周期和DNA复制等)整体受到了扰动,反映出乳腺癌转移是一种涉及广泛基因表达改变的系统性疾病。  相似文献   

14.

Background  

Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (π 1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes.  相似文献   

15.
Tan YD  Fornage M  Fu YX 《Genomics》2006,88(6):846-854
Microarray technology provides a powerful tool for the expression profile of thousands of genes simultaneously, which makes it possible to explore the molecular and metabolic etiology of the development of a complex disease under study. However, classical statistical methods and technologies fail to be applicable to microarray data. Therefore, it is necessary and motivating to develop powerful methods for large-scale statistical analyses. In this paper, we described a novel method, called Ranking Analysis of Microarray Data (RAM). RAM, which is a large-scale two-sample t-test method, is based on comparisons between a set of ranked T statistics and a set of ranked Z values (a set of ranked estimated null scores) yielded by a "randomly splitting" approach instead of a "permutation" approach and a two-simulation strategy for estimating the proportion of genes identified by chance, i.e., the false discovery rate (FDR). The results obtained from the simulated and observed microarray data show that RAM is more efficient in identification of genes differentially expressed and estimation of FDR under undesirable conditions such as a large fudge factor, small sample size, or mixture distribution of noises than Significance Analysis of Microarrays.  相似文献   

16.
One of multiple testing problems in drug finding experiments is the comparison of several treatments with one control. In this paper we discuss a particular situation of such an experiment, i.e., a microarray setting, where the many-to-one comparisons need to be addressed for thousands of genes simultaneously. For a gene-specific analysis, Dunnett's single step procedure is considered within gene tests, while the FDR controlling procedures such as Significance Analysis of Microarrays (SAM) and Benjamini and Hochberg (BH) False Discovery Rate (FDR) adjustment are applied to control the error rate across genes. The method is applied to a microarray experiment with four treatment groups (three microarrays in each group) and 16,998 genes. Simulation studies are conducted to investigate the performance of the SAM method and the BH-FDR procedure with regard to controlling the FDR, and to investigate the effect of small-variance genes on the FDR in the SAM procedure.  相似文献   

17.
Improving false discovery rate estimation   总被引:1,自引:0,他引:1  
MOTIVATION: Recent attempts to account for multiple testing in the analysis of microarray data have focused on controlling the false discovery rate (FDR). However, rigorous control of the FDR at a preselected level is often impractical. Consequently, it has been suggested to use the q-value as an estimate of the proportion of false discoveries among a set of significant findings. However, such an interpretation of the q-value may be unwarranted considering that the q-value is based on an unstable estimator of the positive FDR (pFDR). Another method proposes estimating the FDR by modeling p-values as arising from a beta-uniform mixture (BUM) distribution. Unfortunately, the BUM approach is reliable only in settings where the assumed model accurately represents the actual distribution of p-values. METHODS: A method called the spacings LOESS histogram (SPLOSH) is proposed for estimating the conditional FDR (cFDR), the expected proportion of false positives conditioned on having k 'significant' findings. SPLOSH is designed to be more stable than the q-value and applicable in a wider variety of settings than BUM. RESULTS: In a simulation study and data analysis example, SPLOSH exhibits the desired characteristics relative to the q-value and BUM. AVAILABILITY: The Web site www.stjuderesearch.org/statistics/splosh.html has links to freely available S-plus code to implement the proposed procedure.  相似文献   

18.
Qian HR  Huang S 《Genomics》2005,86(4):495-503
Current high-throughput techniques such as microarray in genomics or mass spectrometry in proteomics usually generate thousands of hypotheses to be tested simultaneously. The usual purpose of these techniques is to identify a subset of interesting cases that deserve further investigation. As a consequence, the control of false positives among the tests called "significant" becomes a critical issue for researchers. Over the past few years, several false discovery rate (FDR)-controlling methods have been proposed; each method favors certain scenarios and is introduced with the purpose of improving the control of FDR at the targeted level. In this paper, we compare the performance of the five FDR-controlling methods proposed by Benjamini et al., the qvalue method proposed by Storey, and the traditional Bonferroni method. The purpose is to investigate the "observed" sensitivity of each method on typical microarray experiments in which the majority (or all) of the truth is unknown. Based on two well-studied microarray datasets, it is found that in terms of the "apparent" test power, the ranking of the FDR methods is given as Step-down相似文献   

19.
A class of nonparametric statistical methods, including a nonparametric empirical Bayes (EB) method, the Significance Analysis of Microarrays (SAM) and the mixture model method (MMM) have been proposed to detect differential gene expression for replicated microarray experiments. They all depend on constructing a test statistic, for example, a t-statistic, and then using permutation to draw inferences. However, due to special features of microarray data, using standard permutation scores may not estimate the null distribution of the test statistic well, leading to possibly too conservative inferences. We propose a new method of constructing weighted permutation scores to overcome the problem: posterior probabilities of having no differential expression from the EB method are used as weights for genes to better estimate the null distribution of the test statistic. We also propose a weighted method to estimate the false discovery rate (FDR) using the posterior probabilities. Using simulated data and real data for time-course microarray experiments, we show the improved performance of the proposed methods when implemented in MMM, EB and SAM.  相似文献   

20.

Background  

The Significance Analysis of Microarrays (SAM) is a popular method for detecting significantly expressed genes and controlling the false discovery rate (FDR). Recently, it has been reported in the literature that the FDR is not well controlled by SAM. Due to the vast application of SAM in microarray data analysis, it is of great importance to have an extensive evaluation of SAM and its associated R-package (sam2.20).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号