首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.  相似文献   

3.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor activated by fatty acids, hypolipidemic drugs, and peroxisome proliferators (PPs). Like other nuclear receptors, PPARalpha is a phosphoprotein whose activity is affected by a variety of growth factor signaling cascades. In this study, the effects of protein kinase C (PKC) on PPARalpha activity were explored. In vivo phosphorylation studies in COS-1 cells transfected with murine PPARalpha showed that the level of phosphorylated PPARalpha is increased by treatment with the PP Wy-14,643 as well as the PKC activator phorbol myristol acetate (PMA). In addition, inhibitors of PKC decreased Wy-14,643-induced PPARalpha activity in a variety of reporter assays. Overexpressing PKCalpha, -beta, -delta, and -zeta affected both basal and Wy-14,643-induced PPARalpha activity. Four consensus PKC phosphorylation sites are contained within the DNA binding (C-domain) and hinge (D-domain) regions of rat PPARalpha (S110, T129, S142, and S179), and their contribution to receptor function was examined. Mutation of T129 or S179 to alanine prevented heterodimerization of PPARalpha with RXRalpha, lowered the level of phosphorylation by PKCalpha and PKCdelta in vitro, and lowered the level of phosphorylation of transfected PPARalpha in transfected cells. In addition, the T129A mutation prevented PPARalpha from binding DNA in an electromobility shift assay. Together, these studies demonstrate a direct role for PKC in the regulation of PPARalpha, and suggest several PKCs can regulate PPARalpha activity through multiple phosphorylation sites.  相似文献   

4.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

5.
Regulation of the insulin receptor kinase by hyperinsulinism   总被引:3,自引:0,他引:3  
A murine fibroblast cell line transfected with human insulin receptor cDNA, NIH 3T3 HIR3.5, was observed to display insulin-induced down-regulation of insulin-binding activity in a time- and concentration-dependent manner. Maximal inhibition of insulin-binding activity (54%) occurred within 16 h of exposure to 100 nM insulin in vivo, where in vivo refers to intact cells in tissue culture. The decrease in cellular insulin-binding activity was the consequence of a decrease in the number of cell-associated insulin receptors as determined by Scatchard analysis of insulin binding, 125I-insulin affinity cross-linking, and Western blotting of the insulin receptor beta subunit. Acute insulin treatment in vivo (1-60 min) resulted in the activation of the insulin receptor protein tyrosine kinase as determined by in vitro phosphorylation of glutamic acid:tyrosine (4:1), where in vitro refers to broken cell preparations. This acute in vivo insulin activation of the insulin receptor tyrosine kinase resulted in a greater stimulation (1.4-1.9-fold) of tyrosine kinase activity in the glutamic acid:tyrosine (4:1) assay than the maximal stimulation produced by insulin treatment in vitro. In contrast, long term (24 h) insulin treatment in vivo resulted in a 50-70% decrease in intrinsic protein tyrosine kinase activity of the insulin receptors compared with that of acutely activated (1 min) insulin receptors. Under these conditions, the insulin receptor protein kinase activity remained insulin independent in the in vitro substrate kinase assay. Surprisingly, the insulin-independent activated (1 min in vivo insulin-treated) and uncoupled (24 h in vivo insulin-treated) insulin receptors displayed similar stoichiometries of 32P incorporation into the beta subunit by in vitro autophosphorylation when compared with the control insulin receptors, ranging from 1.5 to 1.8 mol of phosphate incorporated/mol of insulin receptor. Phosphoamino acid analysis demonstrated that the phosphoserine/phosphothreonine content of in vivo 32P-labeled insulin receptors increased markedly within a 1-h exposure to insulin in vivo, whereas insulin-induced receptor desensitization was not apparent until 10-24 h after exposure to insulin. These data suggest that insulin treatment in vivo results initially in the activation of the insulin receptor kinase followed by a subsequent uncoupling of protein kinase activity. This insulin-induced desensitization of the insulin receptor kinase does not correlate with the extent of beta subunit serine/threonine phosphorylation.  相似文献   

6.
Receptor tyrosine kinases (RTKs) are key regulators of cellular homeostasis. Based on in vitro and ex vivo studies, protein tyrosine phosphatase-1B (PTP1B) was implicated in the regulation of several RTKs, yet mice lacking PTP1B show defects mainly in insulin and leptin receptor signaling. To address this apparent paradox, we studied RTK signaling in primary and immortalized fibroblasts from PTP1B(-/-) mice. After growth factor treatment, cells lacking PTP1B exhibit increased and sustained phosphorylation of the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor (PDGFR). However, Erk activation is enhanced only slightly, and there is no increase in Akt activation in PTP1B-deficient cells. Our results show that PTP1B does play a role in regulating EGFR and PDGFR phosphorylation but that other signaling mechanisms can largely compensate for PTP1B deficiency. In-gel phosphatase experiments suggest that other PTPs may help to regulate the EGFR and PDGFR in PTP1B(-/-) fibroblasts. This and other compensatory mechanisms prevent widespread, uncontrolled activation of RTKs in the absence of PTP1B and probably explain the relatively mild effects of PTP1B deletion in mice.  相似文献   

7.
Phorbol esters induce a rapid phosphorylation of the antigenic epitope of the human IL-2 receptor identified by anti-Tac monoclonal antibody. The physiological activator of protein kinase C, diacylglycerol also stimulated the phosphorylation of the Tac epitope in intact activated human T lymphocytes. Stable derivatives of cyclic nucleotides had no effect on the stimulation of Tac phosphorylation with cultured lymphocytes. Immunoprecipitated Tac derived from particulate membranes could serve as a direct substrate for purified protein kinase C in vitro. The Ca2+/phospholipid dependency of the in vitro phosphorylation reaction substantiated that the phosphorylation of Tac observed in intact cells stimulated by phorbol ester or diacylglycerol was the result of the physiological activation of protein kinase C.  相似文献   

8.
Bae SH  Liu D  Lim HM  Lee Y  Choi BS 《Biochemistry》2008,47(7):1993-2001
Cnu is a nucleoid protein that has a high degree of sequence homology with Hha/YmoA family proteins, which bind to chromatin and regulate the expression of Escherichia coli virulence genes in response to changes in temperature or ionic strength. Here, we determined its solution structure and dynamic properties and mapped H-NS binding sites. Cnu consists of three alpha helices that are comparable with those of Hha, but it has significant flexibility in the C-terminal region and lacks a short alpha helix present in Hha. Upon increasing ionic strength, the helical structure of Cnu is destabilized, especially at the ends of the helices. The dominant H-NS binding sites, located at helix 3 as in Hha, reveal a common structural platform for H-NS binding. Our results may provide structural and dynamic bases for the similarity and dissimilarity between Cnu and Hha functions.  相似文献   

9.
Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC.  相似文献   

10.
Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor-gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR-gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity.  相似文献   

11.
B-cell development and antigen receptor signalling   总被引:1,自引:0,他引:1  
B-cell development and function requires the products of the Vav family of genes. Vav proteins act as key components of the antigen receptor signal transduction machinery by integration of signals that control the cell cycle, differentiation and apoptosis. At the molecular level, Vav proteins regulate small-molecular-mass GTPases, phosphoinositide 3-kinase, TEC family tyrosine kinases and intracellular calcium flux.  相似文献   

12.
The beta2 adrenergic receptor (beta2AR) undergoes desensitization by a process involving its phosphorylation by both protein kinase A (PKA) and G protein-coupled receptor kinases (GRKs). The protein kinase A-anchoring protein AKAP79 influences beta2AR phosphorylation by complexing PKA with the receptor at the membrane. Here we show that AKAP79 also regulates the ability of GRK2 to phosphorylate agonist-occupied receptors. In human embryonic kidney 293 cells, overexpression of AKAP79 enhances agonist-induced phosphorylation of both the beta2AR and a mutant of the receptor that cannot be phosphorylated by PKA (beta2AR/PKA-). Mutants of AKAP79 that do not bind PKA or target to the beta2AR markedly inhibit phosphorylation of beta2AR/PKA-. We show that PKA directly phosphorylates GRK2 on serine 685. This modification increases Gbetagamma subunit binding to GRK2 and thus enhances the ability of the kinase to translocate to the membrane and phosphorylate the receptor. Abrogation of the phosphorylation of serine 685 on GRK2 by mutagenesis (S685A) or by expression of a dominant negative AKAP79 mutant reduces GRK2-mediated translocation to beta2AR and phosphorylation of agonist-occupied beta2AR, thus reducing subsequent receptor internalization. Agonist-stimulated PKA-mediated phosphorylation of GRK2 may represent a mechanism for enhancing receptor phosphorylation and desensitization.  相似文献   

13.
Protein kinase C (PKC)-delta is a diacylglycerol-dependent, calcium-independent novel PKC isoform and has been demonstrated to exert negative regulatory functions in B lymphocytes as well as in mast cells. Whereas in mast cells PKC-delta functionally interacts with the high-affinity receptor for IgE, FcepsilonR1, no such association has been described for the B cell antigen receptor (BCR). In this report, for the first time, we demonstrate the interaction of PKC-delta with different classes of BCR by means of affinity purification and native protein complex analysis. Using a C-terminally truncated Ig-alpha as well as non-phosphorylated and phosphorylated peptides representing C-terminal regions of Ig-alpha, the dependence of this BCR/PKC-delta interaction on tyrosine-phosphorylated Ig-alpha is shown. Finally, splenocytes from PKC-delta-deficient mice are found to exert reduced phosphorylation of PKD (a.k.a. PKC-mu) in response to BCR engagement, suggesting the early, membrane-proximal activation of an attenuating kinase complex including PKC-delta and PKD.  相似文献   

14.
15.
16.
Regulation of auxin response by the protein kinase PINOID   总被引:40,自引:0,他引:40  
Christensen SK  Dagenais N  Chory J  Weigel D 《Cell》2000,100(4):469-478
Arabidopsis plants carrying mutations in the PINOID (PID) gene have a pleiotropic shoot phenotype that mimics that of plants grown on auxin transport inhibitors or of plants mutant for the auxin efflux carrier PINFORMED (PIN), with defects in the formation of cotyledons, flowers, and floral organs. We have cloned PID and find that it is transiently expressed in the embryo and in initiating floral anlagen, demonstrating a specific role for PID in promoting primordium development. Constitutive expression of PID causes a phenotype in both shoots and roots that is similar to that of auxin-insensitive plants, implying that PID, which encodes a serine-threonine protein kinase, negatively regulates auxin signaling.  相似文献   

17.
18.
K T Yu  J E Pessin  M P Czech 《Biochimie》1985,67(10-11):1081-1093
The regulation of the insulin receptor kinase by phosphorylation and dephosphorylation has been examined. Under in vitro conditions, the tyrosine kinase activity of the insulin receptor toward histone is markedly activated when the receptor either undergoes autophosphorylation or is phosphorylated by a purified preparation of src tyrosine kinase on tyrosine residues of its beta subunit. The elevated kinase activity of the phosphorylated insulin receptor is readily reversed when the receptor is dephosphorylated with alkaline phosphatase. Analysis of tryptic digests of phosphorylated insulin receptor using reverse-phase high pressure liquid chromatography suggests that phosphorylation of a specific tyrosine site on the receptor beta subunit may be involved in the mechanism of the receptor kinase activation. Further studies indicate that tyrosine phosphorylation-mediated increase in insulin receptor activity also occurs in intact cells. Thus, when the histone kinase activities of insulin receptor from control and insulin-treated H-35 hepatoma cells are assayed in vitro following the purification of the receptors under conditions which preserve the phosphorylation state of the receptors, the insulin receptors extracted from insulin-treated cells exhibit histone kinase activities 100% higher than those from control cells. The elevated receptor kinase activity from insulin-treated cells appears to result from the increase in phosphotyrosine content of the receptor. Taken together, these results indicate that tyrosine phosphorylation of the insulin receptor beta subunit exerts a major stimulatory effect on the kinase activity of the receptor. Insulin receptor partially purified by specific immunoprecipitation from detergent extracts of control and isoproterenol-treated cells have similar basal but diminished insulin-stimulated beta subunit autophosphorylation activities when incubated with [gamma-32 P]ATP. Similarly, the ability of insulin to stimulate the receptor beta subunit phosphorylation in intact isoproterenol-treated adipocytes is greatly attenuated, whereas, the basal phosphorylation of the insulin receptor is slightly increased by the beta-catecholamine. These data indicate that in rat adipocytes, a cyclic AMP-mediated mechanism, possibly through serine and threonine phosphorylation of the receptor or its regulatory components, may uncouple the receptor tyrosine kinase activity from activation by insulin. Treatment of 32P-labeled H-35 hepatoma cells with phorbol myristate acetate (PMA) results in a marked increase in serine phosphorylation of the insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
PKNalpha is a fatty acid- and Rho-activated serine/threonine protein kinase having a catalytic domain homologous to members of the protein kinase C family. Recently it was reported that PKNalpha is involved in the p38 mitogen-activated protein kinase (MAPK) signaling pathway. To date, however, how PKNalpha regulates the p38gamma MAPK signaling pathway is unclear. Here we demonstrate that PKNalpha efficiently phosphorylates MLTKalpha (MLK-like mitogen-activated protein triple kinase), which was recently identified as a MAPK kinase kinase (MAPKKK) for the p38 MAPK cascade. Phosphorylation of MLTKalpha by PKNalpha enhances its kinase activity in vitro. Expression of the kinase-negative mutant of PKNalpha inhibited the mobility shift of MLTKalpha caused by osmotic shock in SDS-PAGE. Furthermore, PKNalpha associates with each member of the p38gamma MAPK signaling pathway (p38gamma, MKK6, and MLTKalpha). These results suggest that PKNalpha functions as not only an upstream activator of MLTKalpha but also a putative scaffold protein for the p38gamma MAPK signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号