首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.  相似文献   

2.
Carotenoids and their derivatives are essential for growth, development, and signaling in plants and have an added benefit as nutraceuticals in food crops. Despite the importance of the biosynthetic pathway, there remain open questions regarding some of the later enzymes in the pathway. The CYP97 family of P450 enzymes was predicted to function in carotene ring hydroxylation, to convert provitamin A carotenes to non-provitamin A xanthophylls. However, substrate specificity was difficult to investigate directly in plants, which mask enzyme activities by a complex and dynamic metabolic network. To characterize the enzymes more directly, we amplified cDNAs from a model crop, Oryza sativa, and used functional complementation in Escherichia coli to test activity and specificity of members of Clans A and C. This heterologous system will be valuable for further study of enzyme interactions and substrate utilization needed to understand better the role of CYP97 hydroxylases in plant carotenoid biosynthesis.  相似文献   

3.
Yang S  Yu H  Xu Y  Goh CJ 《FEBS letters》2003,555(2):291-296
The plant hormone cytokinin plays a major role in regulating plant growth and development. Here we generated cytokinin-reduction Arabidopsis plants by overexpressing a heterologous cytokinin oxidase gene DSCKX1 from Dendrobium orchid. These transgenic plants exhibited reduced biomass, rapid root growth, decreased ability to form roots in vitro, and reduced response to cytokinin in growing calli and roots. Furthermore, the expression of KNAT1, STM, and CycD3 genes was significantly reduced in the transgenic plants, suggesting that cytokinin may function to control the cell cycles and shoot/root development via regulation of these genes.  相似文献   

4.
In plants, the ureide pathway is a metabolic route that converts the ring nitrogen atoms of purine into ammonia via sequential enzymatic reactions, playing an important role in nitrogen recovery. In the final step of the pathway, (S)-ureidoglycolate amidohydrolase (UAH) catalyzes the conversion of (S)-ureidoglycolate into glyoxylate and releases two molecules of ammonia as by-products. UAH is homologous in structure and sequence with allantoate amidohydrolase (AAH), an upstream enzyme in the pathway with a similar function as that of an amidase but with a different substrate. Both enzymes exhibit strict substrate specificity and catalyze reactions in a concerted manner, resulting in purine degradation. Here, we report three crystal structures of Arabidopsis thaliana UAH (bound with substrate, reaction intermediate, and product) and a structure of Escherichia coli AAH complexed with allantoate. Structural analyses of UAH revealed a distinct binding mode for each ligand in a bimetal reaction center with the active site in a closed conformation. The ligand directly participates in the coordination shell of two metal ions and is stabilized by the surrounding residues. In contrast, AAH, which exhibits a substrate-binding site similar to that of UAH, requires a larger active site due to the additional ureido group in allantoate. Structural analyses and mutagenesis revealed that both enzymes undergo an open-to-closed conformational transition in response to ligand binding and that the active-site size and the interaction environment in UAH and AAH are determinants of the substrate specificities of these two structurally homologous enzymes.  相似文献   

5.
Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase   总被引:13,自引:0,他引:13  
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis, but O2 competes with CO2 for substrate ribulose 1,5-bisphosphate, leading to the loss of fixed carbon. Interest in genetically engineering improvements in carboxylation catalytic efficiency and CO2/O2 specificity has focused on the chloroplast-encoded large subunit because it contains the active site. However, there is another type of subunit in the holoenzyme of plants, which, like the large subunit, is present in eight copies. The role of these nuclear-encoded small subunits in Rubisco structure and function is poorly understood. Small subunits may have originated during evolution to concentrate large-subunit active sites, but the extensive divergence of structures among prokaryotes, algae, and land plants seems to indicate that small subunits have more-specialized functions. Furthermore, plants and green algae contain families of differentially expressed small subunits, raising the possibility that these subunits may regulate the structure or function of Rubisco. Studies of interspecific hybrid enzymes have indicated that small subunits are required for maximal catalysis and, in several cases, contribute to CO2/O2 specificity. Although small-subunit genetic engineering remains difficult in land plants, directed mutagenesis of cyanobacterial and green-algal genes has identified specific structural regions that influence catalytic efficiency and CO2/O2 specificity. It is thus apparent that small subunits will need to be taken into account as strategies are developed for creating better Rubisco enzymes.  相似文献   

6.
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.  相似文献   

7.
植物细胞膜NADPH氧化酶的研究进展   总被引:3,自引:0,他引:3  
植物细胞质膜NADPH氧化酶是植物中一种与哺乳动物嗜中性粒细胞gp91phox同源的氧化还原酶。当植物受到生物或非生物胁迫时,该酶通过短时间内大量产生信号分子活性氧(activeoxygenspecies,AOS)调节基因表达和细胞代谢,使植物及时对逆境胁迫作出反应,以适应环境的变化。NADPH氧化酶在调节植物的生长和发育方面也起着非常重要的作用。本文对其结构特征、活性调节和功能等方面的最新进展进行了综述。  相似文献   

8.
Fatty acid desaturases play important role in plant responses to abiotic stresses including cold, high temperature, drought, and osmotic stress. In this work, we provide the evidence that Fad6, a chloroplast desaturase, is required for salt tolerance during the early seedling development of Arabidopsis. Expression of Fad6 was responsive to salt and osmotic stress. Compared with the wild-type plants, the fad6 mutant showed reduced tolerance to salt stress, and accumulated more Na+ and less K+ under high NaCl stress condition. Furthermore, cellular oxidative damage was more severe in fad6 when treated with high concentrations of NaCl, as indicated by increased electrolyte leakage rate and malondialdehyde production, as well as by decreased activities of anti-oxidative enzymes. All these results suggest that Fad6 is required for salt resistance in Arabidopsis.  相似文献   

9.
Whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleryrodidae), is a serious pest of black gram, (Vigna mungo (L.) Hepper), an important legume pulse crop grown in north India. This research investigated the potential role of selected plant oxidative enzymes in resistance/susceptibility to whitefly in nine black gram genotypes. Oxidative enzyme activity was estimated spectrophotometrically from leaf samples collected at 30 and 50 d after sowing (DAS) from whitefly infested and uninfested plants. The enzymes showed different activity levels at different times after the infestation. The results indicated that in general, whitefly infestation increased the activities of peroxidase and decreased the catalase activity. Resistant genotypes NDU 5-7 and KU 99-20 recorded higher peroxidase and catalase activities at 30 and 50 DAS under whitefly-stress conditions as compared with non-stressed plants. The results suggest that the enhanced activities of the enzymes may contribute to bioprotection of black gram plants against B. tabaci infestation. The potential mechanisms to explain the correlation of resistance to whitefly in black gram genotypes with higher activities of oxidative enzymes are also discussed.  相似文献   

10.
Cytokinins (CKs) are a group of phytohormones that play a crucial role in the regulation of plant growth and development. Identification of the enzymes and the corresponding genes that are involved in CK metabolism allowed us to understand how plants synthesize CKs and adjust CK activity to optimal levels. A major accomplishment toward these goals was the identification of genes for the first enzyme in the CK biosynthetic pathway, adenosine phosphate-isopentenyltransferase (IPT). In Arabidopsis thaliana and Agrobacterium tumefaciens, detailed analyses of IPTs were conducted through not only enzymatic characterization but also molecular structural approaches. These studies revealed the molecular basis for the Agrobacterium-origin of IPT used for the efficient biosynthesis of trans-zeatin that promotes tumorigenesis in host plants. Another landmark in CK research was the identification of CYP735A as an enzyme that converts iP-nucleotide to tZ-nucleotide. Furthermore, the identification of a CK-activating enzyme, LOG, which catalyzes a novel activation pathway, is a remarkable recent achievement in CK research. Collectively, these advances have revealed the complexity of the entire metabolic scheme for CK biosynthesis.  相似文献   

11.
The compartmentation of neutral lipids in plants is mostly associated with seed tissues, where triacylglycerols (TAGs) stored within lipid droplets (LDs) serve as an essential physiological energy and carbon reserve during postgerminative growth. However, some nonseed tissues, such as leaves, flowers and fruits, also synthesize and store TAGs, yet relatively little is known about the formation or function of LDs in these tissues. Characterization of LD-associated proteins, such as oleosins, caleosins, and sterol dehydrogenases (steroleosins), has revealed surprising features of LD function in plants, including stress responses, hormone signaling pathways, and various aspects of plant growth and development. Although oleosin and caleosin proteins are specific to plants, LD-associated sterol dehydrogenases also are present in mammals, and in both plants and mammals these enzymes have been shown to be important in (steroid) hormone metabolism and signaling. In addition, several other proteins known to be important in LD biogenesis in yeasts and mammals are conserved in plants, suggesting that at least some aspects of LD biogenesis and/or function are evolutionarily conserved.  相似文献   

12.
Roles for glutathione transferases in plant secondary metabolism   总被引:5,自引:0,他引:5  
Plant glutathione transferases (GSTs) are classified as enzymes of secondary metabolism, but while their roles in catalysing the conjugation and detoxification of herbicides are well known, their endogenous functions are largely obscure. Thus, while the presence of GST-derived S-glutathionylated xenobiotics have been described in many plants, there is little direct evidence for the accumulation of similarly conjugated natural products, despite the presence of a complex and dichotomous metabolic pathway which processes these reaction products. The conservation in glutathione conjugating and processing pathways, the co-regulation of GSTs with inducible plant secondary metabolism and biochemical studies showing the potential of these enzymes to conjugate reactive natural products are all suggestive of important endogenous functions. As a framework for addressing these enigmatic functions we postulate that either: (a) the natural reaction products of GSTs are unstable and undergo reversible S-glutathionylation; (b) the conjugation products of GSTs are very rapidly processed to derived metabolites; (c) GSTs do not catalyse conventional conjugation reactions but instead use glutathione as a cofactor rather than co-substrate; or (d) GSTs are non-catalytic and function as transporter proteins for secondary metabolites and their unstable intermediates. In this review, we describe how enzyme biochemistry and informatics are providing clues as to GST function allowing for the critical evaluation of each of these hypotheses. We also present evidence for the involvement of GSTs in the synthesis of sulfur-containing secondary metabolites such as volatiles and glucosinolates, and the conjugation, transport and storage of reactive oxylipins, phenolics and flavonoids.  相似文献   

13.
S-adenosyl-L-methionine (SAM)-dependent methyltransferases represent a diverse group of enzymes that catalyze the transfer of a methyl group from a methyl donor SAM to nitrogen, oxygen, sulfur or carbon atoms of a large number of biologically active large and small molecules. These modifications play a major role in the regulation of various biological functions such as gene expression, signaling, nuclear division and metabolism. The three-step SAM-dependent methylation of phosphoethanolamine to form phosphocholine catalyzed by phosphoethanolamine N-methyltransferases (PMTs) has emerged as an important biochemical step in the synthesis of the major phospholipid, phosphatidylcholine, in some eukaryotes. PMTs have been identified in nematodes, plants, African clawed frogs, zebrafish, the Florida lancelet, Proteobacteria and human malaria parasites. Data accumulated thus far suggest an important role for these enzymes in growth and development. This review summarizes published studies on the biochemical and genetic characterization of these enzymes, and discusses their evolution and their suitability as targets for the development of therapies against parasitic infections, as well as in bioengineering for the development of nutritional and stress-resistant plants.  相似文献   

14.
Plant protein inhibitors of cell wall degrading enzymes   总被引:2,自引:0,他引:2  
Plant cell walls, which consist mainly of polysaccharides (i.e. cellulose, hemicelluloses and pectins), play an important role in defending plants against pathogens. Most phytopathogenic microorganisms secrete an array of cell wall degrading enzymes (CWDEs) capable of depolymerizing the polysaccharides in the plant host wall. In response, plants have evolved a diverse battery of defence responses including protein inhibitors of these enzymes. These include inhibitors of pectin degrading enzymes such as polygalacturonases, pectinmethyl esterases and pectin lyases, and hemicellulose degrading enzymes such as endoxylanases and xyloglucan endoglucanases. The discovery of these plant inhibitors and the recent resolution of their three-dimensional structures, free or in complex with their target enzymes, provide new lines of evidence regarding their function and evolution in plant-pathogen interactions.  相似文献   

15.
Wang Y  Suo H  Zhuang C  Ma H  Yan X 《Journal of plant physiology》2011,168(18):2260-2267
The WNK (With No Lysine K) serine-threonine kinases have been shown to be osmosensitive regulators and are critical for cell volume homeostasis in humans. We previously identified a soybean root-specific WNK homolog, GmWNK1, which is important for normal late root development by fine-tuning regulation of ABA levels. However, the functions of WNKs in plant osmotic stress response remains uncertain. In this study, we generated transgenic Arabidopsis plants with constitutive expression of GmWNK1. We found that these transgenic plants had increased endogenous ABA levels and altered expression of ABA-responsive genes, and exhibited a significantly enhanced tolerance to NaCl and osmotic stresses during seed germination and seedling development. These findings suggest that, in addition to regulating root development, GmWNK1 also regulates ABA-responsive gene expression and/or interacts with other stress related signals, thereby modulating osmotic stress responses. Thus, these results suggest that WNKs are members of an evolutionarily conserved kinase family that modulates cellular response to osmotic stresses in both animal and plants.  相似文献   

16.
17.
Oxalate degrading enzymes have a number of potential applications, including medical diagnosis and treatments for hyperoxaluria and other oxalate-related diseases, the production of transgenic plants for human consumption, and bioremediation of the environment. This review seeks to provide a brief overview of current knowledge regarding the major classes of enzymes and related proteins that are employed in plants, fungi, and bacteria to convert oxalate into CO(2) and/or formate. Not only do these enzymes employ intriguing chemical strategies for cleaving the chemically unreactive C-C bond in oxalate, but they also offer the prospect of providing new insights into the molecular processes that underpin the evolution of biological catalysts.  相似文献   

18.
Sphingosine kinases (SKs) catalyse the conversion of sphingosine to sphingosine 1-phosphate (S1P), a signalling lipid that is involved in a plethora of cellular processes including proliferation, apoptosis, calcium homeostasis, angiogenesis, vascular and neuronal maturation, cell migration and immune responses. Over the last few years, it has become clear that SKs are subject to various forms of post-translational regulation which play important roles in the function of these enzymes. Moreover, dysregulation of SKs has been implicated in many pathological conditions, such as cancer. Here we review the various mechanisms of post-translational regulation of the SKs with the view that such knowledge may lead to the development of therapeutic strategies to modulate the activities of these enzymes in the treatment of cancer and a range of other conditions. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

19.
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl‐CoA‐independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection‐pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.  相似文献   

20.
Plants interact with their environment by producing a diverse array of secondary metabolites. A majority of these compounds are phenylpropanoids and flavonoids which are valued for their medicinal and agricultural properties. The phenylpropanoid biosynthesis pathway proceeds with the basic C6-C3 carbon skeleton of phenylalanine, and involves a wide range of enzymes viz., phenylalanine ammonia lyase, coumarate hydroxylase, coumarate ligase, chalcone synthase, chalcone reductase and chalcone isomerase. Recently, bacteria have also been shown to contain homodimeric polyketide synthases belonging to the plant chalcone synthase superfamily linking the capabilities of plants and bacteria in the biosynthesis of flavonoids. We report here the presence of genes encoding the core enzymes of the phenylpropanoid pathway in an industrially useful fungus, Aspergillus oryzae. Although the assignment of enzyme function must be confirmed by further biochemical evidences, this work has allowed us to anticipate the phenylpropanoid metabolism profile in a filamentous fungus for the first time and paves way for research on identifying novel fungal flavonoid-like metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号